
Schemers Competition 2019

Static Blog Generator

The goal of the competition is to build static blog generator using one of the
many Scheme programming language implementations.

All the features are described along the number of points given for their comple-
tion. Code style will also be scored by a jury.

(austerity by /u/shvembldr [instagram])

1

https://git.sr.ht/~schemers/competition-2019-static-blog-generator
https://www.reddit.com/user/shvembldr/
https://www.instagram.com/shvembldr/


Official Mailing List

Sponsors

• Diamond: TBD
• Gold: TBD
• Silver: TBD
• Bronze: TBD

Prizes

TBD

Specifications and Scoring

Scheme Implementation Bonus

• Classic: 50 pts
• R5RS: 25pts
• R6RS: 25pts
• R7RS: 75pts

The Right Thing

Simplicity — the design must be simple, both in implementation and
interface. It is more important for the interface to be simple than
that the implementation be simple.

Correctness — the design must be correct in all observable aspects.
Incorrectness is simply not allowed.

Consistency — the design must not be inconsistent. A design is
allowed to be slightly less simple and less complete to avoid inconsis-
tency. Consistency is as important as correctness.

Completeness — the design must cover as many important situa-
tionsas is practical. All reasonably expected cases must be covered.
Simplicity is not allowed to overly reduce completeness.

Richard P. Gabriel

It is highly recommend to have a Continuous Integration facility hooked into the
git repository whatever the platform you are developing for. Example, on source
hut check man.sr.ht/builds.sr.ht/. Otherwise, describe in the documentation the
steps required to run your project.

2

https://lists.sr.ht/~schemers/schemers-competition-2019-static-blog-generator
https://man.sr.ht/builds.sr.ht/


All submission must come with a Makefile with the following targets:

• make init will setup a local environment for running the blog generator
from source that do must not require superuser privileges.

• make check will run any unit tests you have written.
• make doc must build the documentation.
• make render must render the source files into html as described in the

following specification.
• make server will spawn a webserver at port 8000 suitable to browser the

generated website.
• make pdf must render the blog in .pdf format (if implemented)
• make epub must render the blog in .epub format (if implemented)

The following scoring takes into account the fact that any public feature must
be documented.

Getting started

• Render an index page sorted by date chronologically (50 points)
• Render posts based on the following formats: sxml, skribe, org-mode,

markdown, html (25pts per supported formats)
• Syntax highlighting for scheme code with rainbow delimiters (50pts)
• Posts feed in chronological order: RSS, ATOM (25pts per supported

formats)

Forward

• Add support for keywords the best way you can (25 points per supported
formats)

• Add pages for keywords listing posts with the given keyword in chronological
order (50 pts)

• Add a feed per keyword (25pts per supported formats)

Beyond

• Add support for posts in mutliple languages (100pts)
• Add support for custom templates (100pts)
• Add support for .pdf rendering of the whole blog (50pts)
• Add support for .epub rendering of the whole blog (50pts)
• Add a favicon (100pts)

The worse-is-better

Simplicity — the design must be simple, both in implementation and
interface. It is more important for the implementation to be simple

3



than the interface. Simplicity is the most important consideration in
a design.

Correctness — the design must be correct in all observable aspects.
It is slightly better to be simple than correct.

Consistency — the design must not be overly inconsistent. Consis-
tency can be sacrificed for simplicity in some cases, but it is better
to drop those parts of the design that deal with less common cir-
cumstances than to introduce either implementational complexity or
inconsistency.

Completeness — the design must cover as many important situa-
tions as is practical. All reasonably expected cases should be covered.
Completeness can be sacrificed in favor of any other quality. In fact,
completeness must be sacrificed whenever implementation simplicity
is jeopardized. Consistency can be sacrificed to achieve complete-
ness if simplicity is retained; especially worthless is consistency of
interface.

The goal of this part of the challenge is to be creative. Preliminary hints are
given to the three expected features in some form of latin riddles.

Animata magna minimis

The first mysterious hint was not revelead yet!

Voluptaria cupiditatis parens

The second mysterious hint was not revelead yet!

Fake Bibendum

The last mysterious hint was not revealed yet!

Calendar

• 2019/07/26: Official start of the competition.
• 2019/09/01: first mysterious hint will be revealed!
• 2019/09/30: Last call for participation, after that date nobody can enter

the competition.
• 2019/10/01: second mysterious hint will be revealed!!
• 2019/11/01: last mysterious hint will be revealed!!!
• 2019/12/14: End of the competition
• 2019/12/22: The score board will be published.

4



Teams

There must a maximum of three persons in a team.

• . . .
• . . .
• . . .

FAQ

Should the source of my program be freely available?

Yes.

Can I use pandoc?

If you find it is useful: yes!

What can I do ahead of time?

There is nothing like ahead of time, the competition is already started!

Can I fork an existing project?

Yes, but you must actually produce some Scheme code.

What happens if I’m not going to finish in time?

Commit your code! If anything works, it will be scored based on that.

What is in it for you?

More Scheme code!

What is fun?

Scheme programming language is fun!

5

https://pandoc.org/

	Schemers Competition 2019
	Static Blog Generator
	Official Mailing List
	Sponsors
	Prizes
	Specifications and Scoring
	Scheme Implementation Bonus
	The Right Thing
	The worse-is-better

	Calendar
	Teams
	FAQ
	Should the source of my program be freely available?
	Can I use pandoc?
	What can I do ahead of time?
	Can I fork an existing project?
	What happens if I'm not going to finish in time?
	What is in it for you?
	What is fun?



