Another code sample - symbolic derivatives David A. Wheeler (09 Apr 2013 02:57 UTC)
Re: Another code sample - symbolic derivatives Mark H Weaver (09 Apr 2013 04:26 UTC)
Re: Another code sample - symbolic derivatives David A. Wheeler (09 Apr 2013 04:45 UTC)
Re: Another code sample - symbolic derivatives Alan Manuel Gloria (09 Apr 2013 13:17 UTC)

Another code sample - symbolic derivatives David A. Wheeler 09 Apr 2013 02:57 UTC
Here's a version of the "Wizard book" symbolic derivative calculation, using sweet-expressions.
I've placed it below and put it in an attachment.

Unsurprisingly, sweet-expression's ability to accept infix makes infix expressions nicer. E.G.:
deriv '{{x * y} * {x + 3}} 'x

My goal of working out examples like this is to see if there are any serious problems with the sweet-expression notation.  I don't see any problems with the notation in this case.  Granted, this has a bunch of especially short and simple definitions, but I don't see any sign of trouble.

Comments?

 --- David A. Wheeler

#!/usr/bin/env sweet-run
;#!guile -s
;!#

; Code to generate derivatives from the "Wizard Book" -
; Hal Abelson's, Jerry Sussman's and Julie Sussman's
; "Structure and Interpretation of Computer Programs"
; (MIT Press, 1984; ISBN 0-262-01077-1),
; http://mitpress.mit.edu/sicp/full-text/sicp/book/node39.html
; http://mitpress.mit.edu/sicp/code/index.html
;;; SECTION 2.3.2

define deriv(exp var)
  cond
    number?(exp) 0
    variable?(exp)
      if same-variable?(exp var) 1 0
    sum?(exp)
      make-sum deriv(addend(exp) var) deriv(augend(exp) var)
    product?(exp)
      make-sum
        make-product multiplier(exp) deriv(multiplicand(exp) var)
        make-product deriv(multiplier(exp) var) multiplicand(exp)
    else error("unknown expression type -- DERIV" exp)

;; representing algebraic expressions

define variable?(x) symbol?(x)

define same-variable?(v1 v2)
  {variable?(v1) and variable?(v2) and eq?(v1 v2)}

define sum?(x)
  {pair?(x) and eq?(car(x) '+)}

define addend(s) cadr(s)

define augend(s) caddr(s)

define product?(x)
  {pair?(x) and eq?(car(x) '*)}

define multiplier(p) cadr(p)

define multiplicand(p) caddr(p)

;; Simplification

define make-sum(a1 a2)
  cond
    =number?(a1 0) a2
    =number?(a2 0) a1
    {number?(a1) and number?(a2)} {a1 + a2}
    else list('+ a1 a2)

define =number?(exp num)
  {number?(exp) and {exp = num}}

define make-product(m1 m2)
  cond
    {=number?(m1 0) or =number?(m2 0)} 0
    =number?(m1 1) m2
    =number?(m2 1) m1
    {number?(m1) and number?(m2)} {m1 * m2}
    else list('* m1 m2)

; Here are routines to display result in infix form:

define infix-operators '(+ *)

define infix-tail(op x)
  cond
    null?(x)
      display "}"
    pair?(x)
      display " "
      write op
      display " "
      my-write car(x)
      infix-tail op cdr(x)
    #t
      error("Infix operator with improper list")

define my-write(x)
  cond
    null?(x)
      display "()"
    pair?(x)
      if {memq(car(x) infix-operators) and pair?(cdr(x))}
        begin ; Display in infix order
          display "{"
          if not(null?(cdr(x)))
            my-write cadr(x)
          infix-tail car(x) cddr(x)
        write x
    #t
      write x

; Use demo - this should produce {{x * y} + {y * {x + 3}}}

my-write
  deriv '{{x * y} * {x + 3}} 'x