Some thoughts... David Rush (21 Nov 2001 19:26 UTC)
Bad things Re: Some thoughts... Jussi Piitulainen (21 Nov 2001 20:25 UTC)
Re: Bad things Re: Some thoughts... David Rush (22 Nov 2001 16:10 UTC)
Access time of elements Re: Bad things [] Jussi Piitulainen (27 Nov 2001 10:59 UTC)
Re: Access time of elements Re: Bad things [] Per Bothner (27 Nov 2001 17:10 UTC)
Re: Access time of elements Re: Bad things [] David Rush (27 Nov 2001 17:25 UTC)
Re: Access time of elements Re: Bad things [] Per Bothner (27 Nov 2001 17:55 UTC)
Re: Access time of elements Re: Bad things [] David Rush (27 Nov 2001 21:19 UTC)
Re: Access time of elements Re: Bad things [] Jussi Piitulainen (28 Nov 2001 15:40 UTC)
Re: Access time of elements Re: Bad things [] Jussi Piitulainen (28 Nov 2001 16:20 UTC)
Re: Access time of elements Re: Bad things [] Noel Welsh (28 Nov 2001 10:55 UTC)
Re: Access time of elements Re: Bad things [] Jussi Piitulainen (28 Nov 2001 17:21 UTC)

Access time of elements Re: Bad things [] Jussi Piitulainen 27 Nov 2001 10:58 UTC

David Rush writes:

[array-set! should have its index sequence as a single argument for
efficiency; I pointed out that that sequence needs to be allocated
then, instead of many arguments]

> Except that once you've created an indexing object you can also
> modify it. Since much array access follows predictable patterns this
> agains provides opportunities for significant speed-ups. To
> summarize: package once, iterate many. You'll still have the
> assignments from loop indicies (unles you macrologize them away with
> iteration combinators), but I would be surprised if that took more
> time than repeated packaging.

I did some quick timings on Petite Chez interpreter. It seems you are
right not only in cases that really favour such reuse of the index
objects but also in cases that don't. An optimizing compiler might
change things. The code is in the end of this message in the hope that
somebody with a compiler at hand might educate me on the results.

Here are my timings: min, median and max milliseconds cpu time of
three runs, number of collections, and median times relative to the
least and most favourable case of the "fast" interface; "what" is an
implementation of the present, "slow" interface.

slow   2290 2290 2300  72  1.33  1.16
slow!  2350 2350 2360  59  1.37  1.18
fast0  1990 2000 2010  50  1.16  1.00
fast1  1840 1850 1860  43  1.08  0.93
fast!  1710 1720 1720  29  1.00  0.86
what   2520 2530 2530  82  1.47  1.27

The current (array-set! a k1 k2 k3 k4 o) interface does not seem to
lend itself to the reuse of an index object. (The only motivation to
do that would be efficiency, and it is not achieved.)

Even the simplest use of the current interface loses measurably to the
simplest case of the alternative interface. This is "slow" against
"fast0":

 (array-set! a k1 k2 k3 k4 (array-ref a k1 k2 k3 k4))
 (array-set! a (vector k1 k2 k3 k4) (array-ref a (vector k1 k2 k3 k4)))

And "fast1" does

 (let ((ix (vector k1 k2 k3 k4)))
    (array-set! a ix (array-ref a ix)))

and "slow!" and "fast!" allocate boxes for the index once mutating
them at the appropriate levels of iteration.

Shall we switch, and is a vector good enough for an index object? (I
believe somebody asked for such packaging even apart from efficiency.)

Only the code follows.

;;; The task is to increase, m times, the contents of each cell in a
;;; four dimensional array of 10 * 100 * 10 * 10 elements, initially
;;; all containing o, so all elements end up containing o + m.

;;; The timings to run, with _check_ #f, are
;;; (time (slow  m 0 10 100 10 10 o))
;;; (time (slow! m 0 10 100 10 10 o))
;;; (time (fast0 m 0 10 100 10 10 o))
;;; (time (fast1 m 0 10 100 10 10 o))
;;; (time (fast! m 0 10 100 10 10 o)
;;; (time (what  m 0 10 100 10 10 o))
;;; but hide the constants from the compiler lest it decides to
;;; execute the whole loop at compile time.

;;; Straightforward use of current interface.

(define (slow m n0 n1 n2 n3 n4 o)
  (let ((a (make-slow n0 n1 n2 n3 n4 o)))
    (do ((t 0 (+ t 1)))
	((= t m))
      (do ((k1 0 (+ k1 1)))
	  ((= k1 n1))
	(do ((k2 0 (+ k2 1)))
	    ((= k2 n2))
	  (do ((k3 0 (+ k3 1)))
	      ((= k3 n3))
	    (do ((k4 0 (+ k4 1)))
		((= k4 n4))
	      (slow-set! a k1 k2 k3 k4 (+ (slow-ref a k1 k2 k3 k4) 1)))))))
    (if _check_ (check (vector-ref a 0)))))

;;; Devious use of current interface: reuse package.

(define (slow! m n0 n1 n2 n3 n4 o)
  (let ((a (make-slow n0 n1 n2 n3 n4 o)))
    (let* ((b1 (list 0 0 0 0 0))  (p1 (list 0 0 0 0))
	   (b2 (cdr b1))          (p2 (cdr p1))
	   (b3 (cdr b2))          (p3 (cdr p2))
	   (b4 (cdr b3))          (p4 (cdr p3))
	   (b5 (cdr b4)))
      (do ((t 0 (+ t 1)))
	  ((= t m))
	(do ((k1 0 (+ k1 1)))
	    ((= k1 n1))
	  (set-car! b1 k1)
	  (set-car! p1 k1)
	  (do ((k2 0 (+ k2 1)))
	      ((= k2 n2))
	    (set-car! b2 k2)
	    (set-car! p2 k2)
	    (do ((k3 0 (+ k3 1)))
		((= k3 n3))
	      (set-car! b3 k3)
	      (set-car! p3 k3)
	      (do ((k4 0 (+ k4 1)))
		  ((= k4 n4))
		(set-car! b4 k4)
		(set-car! p4 k4)
		(set-car! b5 (+ (apply slow-ref a p1) 1))
		(apply slow-set! a b1))))))
	(if _check_ (check (vector-ref a 0))))))

;;; Straightforward uses of proposed interface; fast0 allocates the
;;; index object twice; fast1 takes advantage of the fact that it is
;;; the same both times, as it here is.

(define (fast0 m n0 n1 n2 n3 n4 o)
  (let ((a (make-fast n0 n1 n2 n3 n4 o)))
    (do ((t 0 (+ t 1)))
	((= t m))
      (do ((k1 0 (+ k1 1)))
	  ((= k1 n1))
	(do ((k2 0 (+ k2 1)))
	    ((= k2 n2))
	  (do ((k3 0 (+ k3 1)))
	      ((= k3 n3))
	    (do ((k4 0 (+ k4 1)))
		((= k4 n4))
	      (fast-set! a
			 (vector k1 k2 k3 k4)
			 (+ (fast-ref a (vector k1 k2 k3 k4))
			    1)))))))
    (if _check_ (check (vector-ref a 0)))))

(define (fast1 m n0 n1 n2 n3 n4 o)
  (let ((a (make-fast n0 n1 n2 n3 n4 o)))
    (do ((t 0 (+ t 1)))
	((= t m))
      (do ((k1 0 (+ k1 1)))
	  ((= k1 n1))
	(do ((k2 0 (+ k2 1)))
	    ((= k2 n2))
	  (do ((k3 0 (+ k3 1)))
	      ((= k3 n3))
	    (do ((k4 0 (+ k4 1)))
		((= k4 n4))
	      (let ((ix (vector k1 k2 k3 k4)))
		(fast-set! a ix (+ (fast-ref a ix) 1))))))))
    (if _check_ (check (vector-ref a 0)))))

;;; Devious use of proposed interface: reuse package.

(define (fast! m n0 n1 n2 n3 n4 o)
  (let ((a (make-fast n0 n1 n2 n3 n4 o)))
    (let* ((bs (vector 0 0 0 0)))
      (do ((t 0 (+ t 1)))
	  ((= t m))
	(do ((k1 0 (+ k1 1)))
	    ((= k1 n1))
	  (vector-set! bs 0 k1)
	  (do ((k2 0 (+ k2 1)))
	      ((= k2 n2))
	    (vector-set! bs 1 k2)
	    (do ((k3 0 (+ k3 1)))
		((= k3 n3))
	      (vector-set! bs 2 k3)
	      (do ((k4 0 (+ k4 1)))
		  ((= k4 n4))
		(vector-set! bs 3 k4)
		(fast-set! a bs (+ (fast-ref a bs) 1))))))))
    (if _check_ (check (vector-ref a 0)))))

;;; Another implementation of current interface.

(define (what m n0 n1 n2 n3 n4 o)
  (let ((a (make-slow n0 n1 n2 n3 n4 o)))
    (do ((t 0 (+ t 1)))
	((= t m))
      (do ((k1 0 (+ k1 1)))
	  ((= k1 n1))
	(do ((k2 0 (+ k2 1)))
	    ((= k2 n2))
	  (do ((k3 0 (+ k3 1)))
	      ((= k3 n3))
	    (do ((k4 0 (+ k4 1)))
		((= k4 n4))
	      (what-set! a k1 k2 k3 k4 (+ (what-ref a k1 k2 k3 k4) 1)))))))
    (if _check_ (check (vector-ref a 0)))))

;;; In the "slow" representation, array-ref and array-set! are of
;;; variable arity. Arrays contain both getter and setter that in low
;;; dimensional cases are of fixed arity: each index is an argument.

(define (make-slow n0 n1 n2 n3 n4 o)
  (let ((vr (make-vector (* n1 n2 n3 n4) o))
	(n1 (* n2 n3 n4))
	(n2 (* n3 n4))
	(n3 (* n4))
	(n4 (*)))
    (vector vr
	    (lambda (b k1 k2 k3 k4)
	      (vector-ref b
			  (+ n0 (* n1 k1) (* n2 k2) (* n3 k3) (* n4 k4))))
	    (lambda (b k1 k2 k3 k4 o)
	      (vector-set! b
			   (+ n0 (* n1 k1) (* n2 k2) (* n3 k3) (* n4 k4))
			   o)))))

(define (slow-ref a . ks)
  (apply (vector-ref a 1) (vector-ref a 0) ks))

(define (slow-set! a . kso)
  (apply (vector-ref a 2) (vector-ref a 0) kso))

;;; In the "fast" representations, array-ref and array-set! are of
;;; fixed arity: the index sequence is packaged in a data structure.
;;; The idea is that the package is allocated once and mutated in a
;;; loop to contain appropriate index sequences.

;;; The index data structure here is a vector. The indexer knows its
;;; length and the coefficients.

(define (make-fast n0 n1 n2 n3 n4 o)
  (vector (make-vector (* n1 n2 n3 n4) o)
	  (let ((n1 (* n2 n3 n4))
		(n2 (* n3 n4))
		(n3 (* n4))
		(n4 (*)))
	    (lambda (ks)
	      (+ n0
		 (* n1 (vector-ref ks 0))
		 (* n2 (vector-ref ks 1))
		 (* n3 (vector-ref ks 2))
		 (* n4 (vector-ref ks 3)))))))

(define (fast-ref a ks)
  (vector-ref (vector-ref a 0)
	      ((vector-ref a 1) ks)))

(define (fast-set! a ks o)
  (vector-set! (vector-ref a 0)
	       ((vector-ref a 1) ks)
	       o))

;;; There is yet another version: case-lambda, properly implemented,
;;; allows a variable arity interface where arguments need not be
;;; packaged at all for any number of cases. So array-ref and
;;; array-set! are in a sense not of variable arity for four
;;; dimensions, yet they accept each index as a separate arguments.

;;; We can use make-slow as is.

(define what-ref
  (case-lambda
   ;; if uncommented, says incorrect number of arguments
   ;; ((a) ((vector-ref a 1) (vector-ref a 0)))
   ((a k1) ((vector-ref a 1) (vector-ref a 0) k1))
   ((a k1 k2) ((vector-ref a 1) (vector-ref a 0) k1 k2))
   ((a k1 k2 k3) ((vector-ref a 1) (vector-ref a 0) k1 k2 k3))
   ((a k1 k2 k3 k4) ((vector-ref a 1) (vector-ref a 0) k1 k2 k3 k4))
   ((a k1 k2 k3 k4 arg . args)
    (apply (vector-ref a 1) (vector-ref a 0) k1 k2 k3 k4 arg args))))

(define what-set!
  (case-lambda
   ((a o) ((vector-ref a 2) (vector-ref a 0) o))
   ((a k1 o) ((vector-ref a 2) (vector-ref a 0) k1 o))
   ((a k1 k2 o) ((vector-ref a 2) (vector-ref a 0) k1 k2 o))
   ((a k1 k2 k3 o) ((vector-ref a 2) (vector-ref a 0) k1 k2 k3 o))
   ((a k1 k2 k3 k4 o) ((vector-ref a 2) (vector-ref a 0) k1 k2 k3 k4 o))
   ((a k1 k2 k3 k4 k5 arg . args)
    (apply (vector-ref a 2) (vector-ref a 0) k1 k2 k3 k4 k5 arg args))))

;;; (fluid-let ((_check_ #t)) (slow 2 0 10 100 10 10 0))
;;; returns (10000 2 2), that is, length and min and max.

(define _check_ #f)

(define (check v)
  (list (vector-length v)
	(do ((k 0 (+ k 1))
	     (m (vector-ref v 0) (min m (vector-ref v k))))
	    ((= k (vector-length v))
	     m))
	(do ((k 0 (+ k 1))
	     (m (vector-ref v 0) (max m (vector-ref v k))))
	    ((= k (vector-length v))
	     m))))

--
Jussi