Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(27 Aug 2024 08:46 UTC)
|
Re: Numbers with small mantissa widths
Michael Sperber
(28 Aug 2024 14:18 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(28 Aug 2024 08:08 UTC)
|
Re: Numbers with small mantissa widths
Michael Sperber
(28 Aug 2024 15:14 UTC)
|
Re: Numbers with small mantissa widths
Will Clinger
(28 Aug 2024 15:12 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(28 Aug 2024 15:27 UTC)
|
Re: Numbers with small mantissa widths
Will Clinger
(28 Aug 2024 18:21 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(28 Aug 2024 21:09 UTC)
|
Re: Numbers with small mantissa widths
Will Clinger
(29 Aug 2024 04:45 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(29 Aug 2024 11:53 UTC)
|
Re: Numbers with small mantissa widths
Will Clinger
(29 Aug 2024 15:25 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(29 Aug 2024 15:57 UTC)
|
Re: Numbers with small mantissa widths
Will Clinger
(29 Aug 2024 19:21 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(31 Aug 2024 20:02 UTC)
|
Re: Numbers with small mantissa widths
Will Clinger
(01 Sep 2024 01:43 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(02 Sep 2024 15:57 UTC)
|
Re: Numbers with small mantissa widths
Will Clinger
(02 Sep 2024 23:48 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(03 Sep 2024 16:45 UTC)
|
Re: Numbers with small mantissa widths
Bradley Lucier
(04 Sep 2024 01:30 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(04 Sep 2024 06:11 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(04 Sep 2024 14:03 UTC)
|
Re: Numbers with small mantissa widths Will Clinger (13 Sep 2024 12:49 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(14 Sep 2024 09:43 UTC)
|
Re: Numbers with small mantissa widths
Will Clinger
(13 Sep 2024 12:50 UTC)
|
Re: Numbers with small mantissa widths
Michael Sperber
(29 Aug 2024 13:56 UTC)
|
Re: Numbers with small mantissa widths
Marc Nieper-Wißkirchen
(29 Aug 2024 11:38 UTC)
|
!r6rs (import (rnrs base) (rnrs arithmetic bitwise) (rnrs control) (rnrs io simple)) ;;; This is a test of Marc Nieper-Wißkirchen's claims 1 and 2. ;;; ;;; It has been tested in MzScheme, Vicare, Larceny, and Sagittarius. ;;; (To run with Sagittarius v0.8.4, one assertion must be disabled.) ;;; Marc's Claim 1 amounts to saying the R6RS requires x|p ;;; to evaluate to the result of (inexact (approximate #ex p)), ;;; where the approximate procedure is defined as in ;;; https://srfi-email.schemers.org/srfi-77/msg/25583008/ ;;; ;;; I refer to that Claim 1 as Marc's preferred semantics. ;;; Returns the value of x|p as given by Marc's preferred semantics. (define (x!p x p) (inexact (approximate x p))) ;;; Marc's Claim 2 says that when p > q, x|p should evaluate ;;; to the same inexact number as x|q. (define (claim2-holds-for-this-example? x p q) (or (not (> p q)) (= (x!p x p) (x!p x q)))) ;;; In the above, I think Marc and I are both assuming that for ;;; large values of p, x|p evaluates to a floating point value ;;; with the same precision as (inexact x). Let's check that. ;;; The following assertion fails in Sagittarius 0.8.4, apparently ;;; because x|128 is read with less precision than plain old x. ;;; I assume that's just a bug in that old version of Sagittarius. ;;; Rather than install a newer version, I simply remove this ;;; assertion when testing with Sagittarius. (assert (= (inexact #e1234567890987654321.0123456789) 1234567890987654321.0123456789|128)) ; x|p ;;; In the test cases that follow, I will assume (inexact x) ;;; returns a floating point value with 53 bits of precision, ;;; as in IEEE double precision. Let's check that. (assert (= (inexact #e1.0e23) 99999999999999991611392)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; On 04 Sep 2024, Marc Nieper-Wißkirchen posted this code ;;; to the SRFI 77 discussion list. ;;; ;;; https://srfi-email.schemers.org/srfi-77/msg/25583008/ (define approximate (lambda (x p) (assert (and (exact? x) (rational? x))) (assert (and (exact? p) (integer? p) (positive? p))) (let ([a (numerator x)] [b (denominator x)]) (let ([sa (bitwise-length a)] [sb (bitwise-length b)]) (let-values ([(aa bb) (if (>= sa sb) (values a (bitwise-arithmetic-shift-left b (- sa sb))) (values (bitwise-arithmetic-shift-left a (- sb sa)) b))]) (let-values ([(bb sa) (if (>= aa bb) (values (bitwise-arithmetic-shift-left bb 1) (+ sa 1)) (values bb sa))]) (let ([aa (bitwise-arithmetic-shift-left aa (+ p 1))] [sb (+ sb p 1)]) (let-values ([(aa bb) (div-and-mod aa bb)]) (let ([aa (cond [(not (bitwise-bit-set? aa 0)) aa] [(not (zero? bb)) (if (positive? aa) (+ aa 1) (- aa 1))] [(not (bitwise-bit-set? aa 1)) (if (positive? aa) (- aa 1) (+ aa 1))] [(positive? aa) (+ aa 1)] [else (- aa 1)])]) (* aa (expt 2 (- sa sb)))))))))))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; Let's see how frequently Marc's Claim 2 holds for this system. (define (test-claim2 n p q) (let ((test-cases (make-test-cases n))) (do ((test-cases test-cases (cdr test-cases)) (failed 0 (if (claim2-holds-for-this-example? (car test-cases) p q) failed (+ failed 1)))) ((null? test-cases) (if (= failed 0) (begin (display "Marc's Claim 2 was found to be true for each of ") (display n) (display " random test cases.\n")) (begin (display "Marc's Claim 2 was found to be false for ") (display (/ (round (* 1000 (/ failed n))) 10.0)) (display "% of ") (display n) (display " random test cases.\n")))))) (newline)) ;;; Returns n randomly selected exact numbers between 1 and 1 million. (define (make-test-cases n) (do ((n n (- n 1)) (test-cases '() (cons (make-test-case) test-cases))) ((= n 0) test-cases))) ;;; For this purpose, the random number generator need not be of high quality. (define make-test-case (let ((seed1 5000000) (seed2 1205936125) (seed3 6528514201) (modulus1 3000000) (modulus2 4125015) (modulus3 7821551) (m1 10251013) (m2 55013547) (m3 98215133) (a1 1025505029) (a2 53512053) (a3 87012924)) (lambda () (set! seed1 (mod (+ a1 (* m1 seed1)) modulus1)) (set! seed2 (mod (+ a2 (* m2 seed2)) modulus2)) (set! seed3 (mod (+ a3 (* m3 seed3)) modulus3)) (let ((x (+ seed1 (* 13 (/ seed2 10000000)) (/ seed3 1000000000)))) (if (< 1 x 1000000) x (make-test-case)))))) (test-claim2 5000 54 53)