
Matrix API Value Flows Connectors and Bonds Summary

Thinking About the AtomSpace
Knowledge Representation with Graphs

Linas Vepstas

(Virtual) OpenCogCon 2020

Matrix API Value Flows Connectors and Bonds Summary

Topics

New Features and New Ideas

1 Matrix API

2 Value Flows

3 Connectors and Bonds

Matrix API Value Flows Connectors and Bonds Summary

Representing Extremely Sparse Data

A common task in data science
A matrix: M = Mij = P(x , y) = P (A|B) =

For example: conditional probabilities, marginal probabilities...
When i , j , x , y ,A,B are words, genes, protiens...
Extremely sparse data
Out of 100K ×100K there are maybe 10M pairs!

Matrix API Value Flows Connectors and Bonds Summary

Representing Extremely Sparse Data

Opencog “classic” style
Knowledge representation with Atoms

Genomics
EvaluationLink

Predicate “up-regulates”
List

Gene “FLNC”
Gene “MAP2K4”

Mij = P(x , y) = Rupregulates (FLNC ,MAP2K4)
But where are the numbers?

Matrix API Value Flows Connectors and Bonds Summary

Key-Value Store per Atom

Setting Values by declaring them! ... with Atoms!
SetValueLink

EvaluationLink
Predicate “up-regulates”
List

Gene “FLNC”
Gene “MAP2K4”

<some key> <some value>

Matrix API Value Flows Connectors and Bonds Summary

Matrix Subsystem

Scheme: (use-modules (opencog matrix))

Object-oriented API to matricies in the AtomSpace
Generic programming: “parametric polymorphism”

(define (my-genetics-object)

(define (get-left-type) 'Gene)

(define (get-right-type) 'Gene)

(define (get-pair-type) 'EvaluationLink)

(define (get-count PAIR)

(cog-value PAIR (Predicate �some-key�))))

Matrix API Value Flows Connectors and Bonds Summary

Matrix Toolkit

Frequencies, marginal probabilities
Mutual Information
Similarity: e.g. cosine similarity
`p-norms (“manhattan distance”, etc.)
Data filters and data cuts!

Someone:
PLEASE DO THIS: Port to R or to SciPy(?)

Matrix API Value Flows Connectors and Bonds Summary

Topics

New Features and New Ideas

1 Matrix API

2 Value Flows

3 Connectors and Bonds

Matrix API Value Flows Connectors and Bonds Summary

Values are Mutable

(FloatValue 1 2 3)

(SimpleTruthValue 0.99 0.6)

(StringValue �a� �b� �c�)

(LinkValue (StringValue �answer�) (FloatValue 42))

StreamValue

RandomStream

QueueValue

FormulaStream

Matrix API Value Flows Connectors and Bonds Summary

Values can be manipulated...

... with Atoms!
Copying Values

(SetValue (Concept "foo") (Predicate "some key")

(ValueOf (Concept "bar") (Predicate "other key")))

Declarative Knowledge!
dog is-a animal, dog has-a tail

Declare the movement of values
Copying, arithmetic, formulas...

Matrix API Value Flows Connectors and Bonds Summary

Formulas

Values can be transformed
Triangle Numbers
(Lambda

(Variable "$X")

(Divide

(Times (Variable "$X") (Plus (Variable "$X")

(Number 1)))

(Number 2))))

Verbose!
But Declarative!
Searchable!

Matrix API Value Flows Connectors and Bonds Summary

Topics

New Features and New Ideas

1 Matrix API

2 Value Flows

3 Connectors and Bonds

Matrix API Value Flows Connectors and Bonds Summary

Connectors and Bonds

Terms and variables
A term: f (x) or an n-ary function symbol: f (x1, x2, · · · , xn)

A variable: x or maybe more: x , y , z , · · ·
A number: 42 .. or a string “foobar” ... or ...
Plug it in: f (x) : 42 7→ f (42)
“Call function f with argument of 42”

Matrix API Value Flows Connectors and Bonds Summary

Plug it in!

Agnostic connections
Which one is the function?
Which one is the argument?
Who called who?

Matrix API Value Flows Connectors and Bonds Summary

Generic Connectors

Generic connectors (aka “tensors”: Mijk...)

Generic bonds (aka “tensor contraction”: v µgµνdx ν)

Matrix API Value Flows Connectors and Bonds Summary

Connectors and Bonds in Atomese

An n-ary function symbol: f (x1, x2, · · · , xn)

(Section

(Concept �function f�)

(ConnectorSeq

(Connector (Type �num var�) (Concept �x1�))

(Connector (Type �num var�) (Concept �x2�))

...

(Connector (Type �num var�) (Concept �xn�))))

Matrix API Value Flows Connectors and Bonds Summary

Natural Language

Linguistics: SUBJECT threw an OBJECT

(Section
(Word “throw”)
(ConnectorSeq

(Connector (Type “SUBJECT”) (ConnectorDir “left”))
(Connector (Type “OBJECT”) (ConnectorDir “right”))))

This is what Link Grammar is!

Matrix API Value Flows Connectors and Bonds Summary

Chemistry

Krebs cycle (Citric acid cycle)

(Section

(Concept �Phosphorylation�)

(ConnectorSeq

(Connector (Type �R-OPO3�) (ConnDir �input�))

(Connector (Concept �ADP�) (ConnDir �input�))

...

(Connector (Type �R-OH�) (ConnDir �output�))

Matrix API Value Flows Connectors and Bonds Summary

Theorem Proving

Natural Deduction - Judgements and Propositions

Rule of inference: A prop B prop
(A∧B) prop ∧F

(Section

(Label �Rule of Introduction A and B�)

(ConnectorSeq

(Connector (Type �Prop�) (ConnDir �input�))

(Connector (Type �Prop�) (ConnDir �input�))

(Connector (Type �Prop�) (ConnDir �output�))

Matrix API Value Flows Connectors and Bonds Summary

Connectors and Bonds: Why?

Because Computer Science!
Parsing and Grammar
Generation of graphs
...with weighted probabilities (Bayesian, PLN, ...)
...with constraints (constraint satisfaction)
Logical Inference and Deduction (...probabilistic....)
Tensor algebras and deformations

Matrix API Value Flows Connectors and Bonds Summary

Take-aways

Sparse data is rampant in real life.
Graphical representations are natural.
Jigsaw puzzle pieces are actually ... tensors!
Parsing == assembling jigsaw puzzle pieces!
Values flow along graph edges

Projects
Nascant generation of graphs:
https://github.com/opencog/generate
Learning graph components:
https://github.com/opencog/learn

	
	Matrix API
	Value Flows
	Connectors and Bonds
	Summary

