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Representing Extremely Sparse Data

A common task in data science
A matrix: M = Mij = P(x , y) = P (A|B) =

For example: conditional probabilities, marginal probabilities...
When i , j , x , y ,A,B are words, genes, protiens...
Extremely sparse data
Out of 100K ×100K there are maybe 10M pairs!
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Representing Extremely Sparse Data

Opencog “classic” style
Knowledge representation with Atoms

Genomics
EvaluationLink

Predicate “up-regulates”
List

Gene “FLNC”
Gene “MAP2K4”

Mij = P(x , y) = Rupregulates (FLNC ,MAP2K4)
But where are the numbers?
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Key-Value Store per Atom

Setting Values by declaring them! ... with Atoms!
SetValueLink

EvaluationLink
Predicate “up-regulates”
List

Gene “FLNC”
Gene “MAP2K4”

<some key> <some value>
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Matrix Subsystem

Scheme: (use-modules (opencog matrix))

Object-oriented API to matricies in the AtomSpace
Generic programming: “parametric polymorphism”

(define (my-genetics-object)

(define (get-left-type) 'Gene)

(define (get-right-type) 'Gene)

(define (get-pair-type) 'EvaluationLink)

(define (get-count PAIR)

(cog-value PAIR (Predicate �some-key�))))
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Matrix Toolkit

Frequencies, marginal probabilities
Mutual Information
Similarity: e.g. cosine similarity
`p-norms (“manhattan distance”, etc.)
Data filters and data cuts!

Someone:
PLEASE DO THIS: Port to R or to SciPy(?)
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Values are Mutable

(FloatValue 1 2 3)

(SimpleTruthValue 0.99 0.6)

(StringValue �a� �b� �c�)

(LinkValue (StringValue �answer�) (FloatValue 42))

StreamValue

RandomStream

QueueValue

FormulaStream
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Values can be manipulated...

... with Atoms!
Copying Values

(SetValue (Concept "foo") (Predicate "some key")

(ValueOf (Concept "bar") (Predicate "other key")))

Declarative Knowledge!
dog is-a animal, dog has-a tail

Declare the movement of values
Copying, arithmetic, formulas...



Matrix API Value Flows Connectors and Bonds Summary

Formulas

Values can be transformed
Triangle Numbers
(Lambda

(Variable "$X")

(Divide

(Times (Variable "$X") (Plus (Variable "$X")

(Number 1)))

(Number 2))))

Verbose!
But Declarative!
Searchable!
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Connectors and Bonds

Terms and variables
A term: f (x) or an n-ary function symbol: f (x1, x2, · · · , xn)

A variable: x or maybe more: x , y , z , · · ·
A number: 42 .. or a string “foobar” ... or ...
Plug it in: f (x) : 42 7→ f (42)
“Call function f with argument of 42”
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Plug it in!

Agnostic connections
Which one is the function?
Which one is the argument?
Who called who?
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Generic Connectors

Generic connectors (aka “tensors”: Mijk...)

Generic bonds (aka “tensor contraction”: v µgµνdx ν)
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Connectors and Bonds in Atomese

An n-ary function symbol: f (x1, x2, · · · , xn)

(Section

(Concept �function f�)

(ConnectorSeq

(Connector (Type �num var�) (Concept �x1�))

(Connector (Type �num var�) (Concept �x2�))

...

(Connector (Type �num var�) (Concept �xn�))))
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Natural Language

Linguistics: SUBJECT threw an OBJECT

(Section
(Word “throw”)
(ConnectorSeq

(Connector (Type “SUBJECT”) (ConnectorDir “left”))
(Connector (Type “OBJECT”) (ConnectorDir “right”))))

This is what Link Grammar is!
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Chemistry

Krebs cycle (Citric acid cycle)

(Section

(Concept �Phosphorylation�)

(ConnectorSeq

(Connector (Type �R-OPO3�) (ConnDir �input�))

(Connector (Concept �ADP�) (ConnDir �input�))

...

(Connector (Type �R-OH�) (ConnDir �output�))
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Theorem Proving

Natural Deduction - Judgements and Propositions

Rule of inference: A prop B prop
(A∧B) prop ∧F

(Section

(Label �Rule of Introduction A and B�)

(ConnectorSeq

(Connector (Type �Prop�) (ConnDir �input�))

(Connector (Type �Prop�) (ConnDir �input�))

(Connector (Type �Prop�) (ConnDir �output�))
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Connectors and Bonds: Why?

Because Computer Science!
Parsing and Grammar
Generation of graphs
...with weighted probabilities (Bayesian, PLN, ...)
...with constraints (constraint satisfaction)
Logical Inference and Deduction (...probabilistic....)
Tensor algebras and deformations
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Take-aways

Sparse data is rampant in real life.
Graphical representations are natural.
Jigsaw puzzle pieces are actually ... tensors!
Parsing == assembling jigsaw puzzle pieces!
Values flow along graph edges

Projects
Nascant generation of graphs:
https://github.com/opencog/generate
Learning graph components:
https://github.com/opencog/learn
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