Thinking About the AtomSpace
Knowledge Representation with Graphs

Linas Vepstas

(Virtual) OpenCogCon 2020

Topics

New Features and New Ideas

© Matrix API
© Value Flows

© Connectors and Bonds

Matrix API
[Jelelolole}

Representing Extremely Sparse Data

A common task in data science
e A matrixx: M = M;; = P(x,y) = P (A|B) =V
@ For example: conditional probabilities, marginal probabilities...
@ When /,j, x,y, A, B are words, genes, protiens...
@ Extremely sparse data
@ Out of 100K x 100K there are maybe 10M pairs!

Matrix API

[o] lelelele}

Representing Extremely Sparse Data

Opencog “classic” style
Knowledge representation with Atoms

EvaluationLink
Predicate “up-regulates”
List
Gene “FLNC”
Gene “MAP2K4"

° M'J = P(va) = Rupregulates (FLNC, MAP2K4)
@ But where are the numbers?

Matrix API
[eeY Yolole}

Key-Value Store per Atom

Setting Values by declaring them! ... with Atoms!

SetValueLink
EvaluationLink
Predicate “up-regulates”
List
Gene “FLNC”
Gene “MAP2K4"
<some key> <some value>

Matrix API
00000

Matrix Subsystem

Scheme: (use-modules (opencog matrix))
@ Object-oriented API to matricies in the AtomSpace

@ Generic programming: “parametric polymorphism”

(define (my-genetics-object)
(define (get-left-type) ’Gene)
(define (get-right-type) ’Gene)
(define (get-pair-type) ’EvaluationLink)
(define (get-count PAIR)
(cog-value PAIR (Predicate ‘‘some-key’’))))

Matrix API
0000e0

Matrix Toolkit

@ Frequencies, marginal probabilities

@ Mutual Information

@ Similarity: e.g. cosine similarity

@ /,-norms (“manhattan distance”, etc.)
o Data filters and data cuts!

Someone:
PLEASE DO THIS: Port to R or to SciPy(?)

Matrix API
oooooe

Topics

New Features and New Ideas

© Matrix API
© Value Flows

© Connectors and Bonds

Value Flows
®00

Values are Mutable

(FloatValue 1 2 3)

(SimpleTruthValue 0.99 0.6)

(StringValue ‘a” ‘b’ “‘c’”)

(LinkValue (StringValue ‘‘answer”) (FloatValue 42))

StreamValue

o RandomStream
o QueueValue
o FormulaStream

Value Flows
oeo

Values can be manipulated...

. with Atoms!

Copying Values

(SetValue (Concept "foo") (Predicate "some key")
(ValueOf (Concept "bar") (Predicate "other key")))

@ Declarative Knowledge!
e dog is-a animal, dog has-a tail
@ Declare the movement of values
e Copying, arithmetic, formulas...

Value Flows

ooe

Formulas

Values can be transformed

Triangle Numbers

(Lambda
(Variable "$X")
(Divide
(Times (Variable "$X") (Plus (Variable "$X'")
(Number 1)))
(Number 2))))

@ Verbose!
@ But Declarative!

@ Searchablel

Connectors and Bonds
©00000000

New Features and New Ideas

© Matrix API

Q Value Flows

© Connectors and Bonds

Connectors and Bonds
0®0000000

Connectors and Bonds

Terms and variables

e A term: f (x) or an n-ary function symbol: f (xi, x2, -, Xn)
@ A variable: x or maybe more: x,y,z,---

@ A number: 42 .. or a string “foobar” ... or ...

o Plugitin: f(x):42+— f (42)

e "Call function f with argument of 42"

Connectors and Bonds
00®000000

Plug it in!

Agnostic connections
@ Which one is the function?
@ Which one is the argument?
@ Who called who?

Connectors and Bonds
[ele]eY Yololelele)

Generic Connectors

Generic connectors (aka “tensors™: My)

Generic bonds (aka “tensor contraction”: v# gy, dx")

Connectors and Bonds
[eleleleY Yolelele)

Connectors and Bonds in Atomese

An n-ary function symbol: f (xq,x2, -, Xn)
(Section
(Concept ‘‘function f£’)
(ConnectorSeq

(Connector (Type ‘‘num var’’) (Concept ““x1’))
(Connector (Type ‘‘num var’’) (Concept ““x2’))

(Connector (Type ‘‘num var’’) (Concept “‘xn’’))))

Connectors and Bonds
000008000

Natural Language

Linguistics: SUBJECT threw an OBJECT

(Section
(Word “throw™)
(ConnectorSeq
(Connector (Type “SUBJECT") (ConnectorDir “left"))
(Connector (Type “OBJECT") (ConnectorDir “right"))))

This is what Link Grammar is!

Connectors and Bonds
000000®00

Chemistry

Krebs cycle (Citric acid cycle)
ADP ATP

R-OPO N A roH

(Section
(Concept ‘‘Phosphorylation’’)
(ConnectorSeq
(Connector (Type ‘R-0P03’’) (ConnDir ‘‘input’’))
(Connector (Concept ‘‘ADP’’) (ConnDir ‘‘input’’))

(Connector (Type ‘R-OH’) (ConnDir ‘‘output’’))

Connectors and Bonds
000000080

Theorem Proving

Natural Deduction - Judgements and Propositions

A prop B prop

Rule of inference: (ARB) prop NF

(Section
(Label ‘“Rule of Introduction A and B’’)
(ConnectorSeq

(Connector (Type ¢Prop’’) (ConnDir ‘‘input’’))
(Connector (Type *Prop’’) (ConnDir ‘‘input’’))
(Connector (Type ‘Prop’’) (ConnDir ‘‘output’’))

Connectors and Bonds
00000000e

Connectors and Bonds: Why?

Because Computer Science!
@ Parsing and Grammar
Generation of graphs
...with weighted probabilities (Bayesian, PLN, ...)

°
°

@ ...with constraints (constraint satisfaction)

@ Logical Inference and Deduction (...probabilistic....)
°

Tensor algebras and deformations

Summary
°

Take-aways

Sparse data is rampant in real life.
Graphical representations are natural.
Jigsaw puzzle pieces are actually ... tensors!
Parsing == assembling jigsaw puzzle pieces!

Values flow along graph edges

Projects
e Nascant generation of graphs:
https://github.com/opencog/generate
o Learning graph components:
https://github.com/opencog/learn

	
	Matrix API
	Value Flows
	Connectors and Bonds
	Summary

