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Abstract

This text reviews the concepts of a graph store, starting from the fundamen-
tal question of how to efficiently represent a graph in RAM (that is, in storage).
Starting with a naive conception of a graph database, it arrives at hypergraphs and
metagraphs as minor modifications to the storage format of a graph. The resulting
structure proves to be simpler and more efficient for representing graph data.

This starts a domino chain of claims: Metagraphs are more flexible than either
graph stores or SQL-style table stores or JSON-stores for storing data. Metagraphs
have a natural query language that is more powerful and easier to use than SQL-
inspired query languages, mostly because the table-join concept is obviated and
replaced by isomorphism.

It is easy to specify a term rewriting system with metagraphs; it is a trite exten-
sion of having a query system. Both forward and reverse queries are natural, and
so metagraphs provide a solid foundation for rule-based systems.

Metagraphs are naturally typed, in the sense of type theory. Metagraphs are
easily reified, and so the type system is itself trivially expressible as metagraphs.

Metagraphs can be used to specify a programming system/programming lan-
guage, but that language is low-level, and not really suitable for humans. It is ideal
for algorithmic (machine) manipulation, analogous to intermediate languages in-
side of compilers.

Most of these claims are founded on experimental results, rather than assertions
of theoretical analysis. The experimental platform is the OpenCog AtomSpace and
Atomese language.

This is part of a sequence of texts on sheaves (a la sheaf theory). It is a prereq-
uisite for understanding the practical foundations on which sheaves can be built. It
is useful, but not necessary, for understanding the actual AtomSpace implementa-
tion.

*linasvepstas@gmail.com https://orcid.org/0000-0002-2557-740X
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1 Introduction
Currently, graph databases are popular, as they have a rather distinct performance pro-
file, differing from both SQL and noSQL databases. At a simplistic level, the OpenCog
AtomSpace is a kind of a graph database. More correctly, it is a generalized-hypergraph
or “metagraph” database. This design has certain implications for RAM and CPU us-
age. This text argues that it has superior properties to ordinary graph databases. It
arrives at this conclusion by starting with the most basic, foundational description of
graph databases, and then defines hypergraphs and metagraphs as minor variants on the
underlying data structures.

Graphs offer an interesting storage format for many reasons. Coupled to those
reasons is a need for graph traversal, and another need for graph query (solving the
subgraph isomorphism problem). Thus, the questions examined here include how one
might best be able to traverse graphs, and how to best perform subgraph matching. By
“best”, it is meant algorithms that find a good balance between speed and size.

This text is organized into the following sections:

• A naive definition of graphs.

• An aside about attaching attributes to the edges and vertexes of a graph. This
is effectively a quick summary of traditional knowledge representation formats,
specifically, tables, JSON and s-expressions.

• How graphs can be represented in memory (RAM), and how much storage is
used to represent a graph.

• Modifications to the representation that result in hypergraphs and metagraphs,
including an analysis of memory usage. A formal definition of a metatree, the
core component of a metagraph. A key result is that metatrees are more compact
than graphs for most data representation problems. The first hints that they are
also more natural and easier to work with start to show.

• A discussion of the concept of “indexing”, and how indexes are used to find data.
Contrasts are drawn between indexing in graphs, and indexing in SQL databases.
(The noSQL databases are given short shrift, mostly because of a famous result
showing that they are actually an “opposite category”, best termed coSQL.[1])
A key observation is that metagraphs unavoidably have a certain kind of index
built into them; they come equipped with a (partial) index.

• A discussion of partial indexes, and their role in database normalization. An ar-
gument is made that metatrees are self-normalizing. This feels perhaps uncom-
fortable, given the vast resources that database textbooks expend on teaching
normalization to students.

• Representing metatrees as strings, with specific attention focused on the fact that
subtrees are necessarily unique, and how this uniqueness can be managed in a
practical way. This includes a rejection of UUID’s as a technique for assigning
unique labels to metatrees.
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• A discussion of insertion, deletion and graph mutability. A primary result is
that metatrees are necessarily immutable, as otherwise a host of useful and de-
sirable assumptions are shattered. This is a positive result: immutability is a
marvelous property for data structures to have, when they are being accessed by
multi-threaded systems. A secondary result is that a metagraph database looks
exactly like a single metatree, but a mutable one. Thus, there are two kinds of
metatrees: the immutable ones are called “data” and the mutable ones are called
“databases”. Since they are both metatrees, they can be layered, nested, hierar-
chically stacked, as desired.

• A review of query languages and graph traversal. A primary result is that all
SQL-inspired query languages inherit the table-based viewpoint of SQL. This
in turn causes one to think in terms of table joins, which, in a graph setting,
looks like an explicitly-specified graph walk, chaining from one edge to the next.
This is seen in systems such as GraphQL, SparQL, Neo4J or grakn.ai (TypeDB),
which present graph queries in terms of explicit edge walks.

• An example of a metagraph query language, which hops outside of the *QL
paradigm of edge walks (aka table joins), into a query mode that more closely
resembles pattern matching. Conventional pattern matching is implemented in
terms of a state machine, and so it is not enough for a proper graph query. A true
graph walk requires a stack machine; it requires a recursive walk of a graph.

• A short discussion of query analysis and query planning for a metagraph query
language.

• A presentation of inverted queries. These are queries that are “answers” in
search of a “question”. They consist entirely of constant terms, to be matched
to forward-queries having variables in them. Inverted queries are the bread-and-
butter of chat-bots and rule engines. The key observation here is that metatrees
represent inverted queries just as readily and naturally as forward queries; this
is because a partial index on a metatree can be understood as a kind of trie.
Metatrees unify database concepts with rule engine concepts within the same
framework.

• A discussion of the natural interpretation of metatrees. The experimental result
here, after a decade of use, is that metatrees correspond to type-theoretical types.
They reify easily and naturally, and have an obvious suite of type constructors.
As you might guess from the tone of voice here, the type constructors are them-
selves just metatrees. The concept of sheaves is touched upon very quickly here,
as the sheaf elements are just “jigsaw puzzle pieces” and the jigsaw connectors
are types.

• A discussion of execution, evaluation, fexprs, macros, $vau, term rewriting sys-
tems and intermediate languages. Obviously, abstract syntax trees are a special
case of trees, and trees are a special case of metatrees. Abstract syntax trees
achieve two things: they encode executable programs, and they also encode syn-
tactic structure that can be re-written by homotopic transformations. As such,
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they bridge across some old ideas in lisp (fexprs, $vau) and newer ideas in knowl-
edge representation (prolog).

• A discussion of human-oriented programming languages vs. machine-oriented
programming languages. Metatrees and metagraphs are themselves too low a
level to be suitable as a programming language which human beings would want
to use on a daily basis. Instead, they have more in common with compiler inter-
mediate languages, which are term rewriting systems used by machines (compil-
ers) to perform transformations on data.

As a conclusion, it is noted that the OpenCog AtomSpace has been the experimental
platform on which all of the above results have been obtained, and embodies most of
the ideas presented here.1

1See https://wiki.opencog.org/w/AtomSpace and https://github.com/opencog/
atomspace
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2 Graph Representations
Formally, a graph is

• A set of vertexes V = {v1,v2, · · · ,vM}

• A set of edges E = {e1,e2, · · · ,eN} where each edge ek is an ordered pair of
vertexes drawn from the set V .

Because edges are ordered pairs, it is conventional to denote them with arrows, having
a head and tail. These can be joined together in arbitrary ways. Below is a “typical”
directed graph:

234 n=61

2.1 Attributes
In practice, one wishes to associate a label to each vertex, and also some additional
attribute data; likewise for the edges. There are three fundamental choices available for
storing attributes: merged schema+data, disjoint schema–data and s-expressions. An
examples of the first is JSON. Each block of data to be stored is preceded by its name.
Additional markup, such as quotes and square brackets, indicate structure such as text-
strings and arrays. An example of disjoint schema–data are tables. The name and data
type appears only in the column heading for the table; individual rows in the table do
not need to repeat the schema. Clearly, for tables with more than a few rows, the tabular
format offers a huge advantage in terms of memory usage. Conversely, having many
tables with just one or two rows each quickly becomes a table management problem;
conventional systems are not designed to hold a million tables of one row each.

Tables are highly inflexible when new columns or new schema need to be added.
There is no sensible way to take one row of a table, and have it use a different schema
than the other rows. It doesn’t even make sense to talk about rows in this way; if one
row has a different schema than another, they aren’t rows of the same table any more.

An example of an s-expression store is a key-value store. Here, the first word
is taken to be the key; subsequent words are taken to be a list of values associated
with that key. The idea of s-expressions emphasizes that the key-value store can be
hierarchically structured. An example is the Unix file-system structure: each directory
can have files, but it can also have subdirectories, ad infinitum. In this sense, a URL
can be understood to be a kind-of s-expression.

In a graph store, one has these three basic choices for storing attributes, both for
vertexes and for edges. One might even contemplate a mixture; after all, a JSON blob
is isomorphic to a table with only a single row. The remainder of this text will make
little or no assumptions about the storage format of the attributes, as this has little or
no impact on the primary topics here. With one exception: query and indexing. This is
reviewed in a distinct section later on.
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2.1.1 Emulating Tables

This section aims to make the above commentary a bit more concrete by working
though some examples. Although the examples in this section are written in text, the
reader is very strongly urged to try to imagine how these structures might be repre-
sented in RAM, and how much storage they might take. A later section will return to
these questions of in-RAM representations.

Consider the need to store data about some students. Expressed in JSON format, it
might be written as:

{ grades :
[

{ s tudent : {name : Joe } , { gpa : 3 . 5 } } ,
{ s tudent : {name : Mary } , { gpa : 3 . 6 } } ,
{ s tudent : {name : Rachel } , { gpa : 3 . 0 } }

]
}

The square brackets denote a list; as is conventional with a list, all list elements are
uniform and of the same type. Clearly, this appears to be a very regular structure. If
there are hundreds of students, one might try to save some space by eliminating the
repeated attribute names. If JSON is used for this, this becomes a column-store:

{ t ab l e :
{ schema : {name : s t r i n g } , { gpa : f l o a t } }
{ names : [ Joe , Mary , Rachel ] } ,
{ gpa : [ 3 . 5 , 3 .6 , 3.0 ] }

}

That is, each entry in the table is a column name, followed by a list of all of the values
in that column.

This is distinct from a row-store. In a row store, one conventionally provides a
schema describing the columns and their formats, much as above, and then provides
the rows, one by one, as “records”, or inhomogeneous lists of fixed length. That is,
each entry in the list has a different type (it has the type of the column), but each list is
exactly the same length; thus, a “record”.

Students
name gpa
string float
Joe 3.5

Mary 3.6
Rachel 3.0

There does not appear to be any way of representing a row-store in JSON, at least
not in the JSON as naively conceived here. One wishes to write something like the
below, but the syntax makes it illegal:

{ t ab l e :
{ schema : {name : s t r i n g } , { gpa : f l o a t } }
{ s tudents :
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[
( Joe , 3 . 5 ) , # This i s not v a l i d JSON!
( Mary , 3 . 6 ) ,
( Rachel , 3 .0 )

]
}

}

It is this last example that makes clear that an s-expression store can offer the best
of both worlds. This is shown in the next section.

2.1.2 OGRE: Open Generic Representation

A particularly nice and human-friendly API can be found in the OGRE module in
BAP.[2] It is an s-expression database that allows new data structures to be defined in
generic ways. In short, any s-expression is a valid record. Records do not need to be of
the same length, or of the same type.

Thus, the previous example can be written as
( s tudent (name Joe ) ( gpa 3 . 5 ) )
( s tudent (name Mary ) ( gpa 3 . 6 ) )
( s tudent (name Rachel ) ( gpa 3 . 0 ) )

Note that these are three distinct records, and are NOT a list of three rows!
As written, this has a distinctly JSONic feel to it, in that every value is tagged

with the field type that names it. But then, the OGRE documentation notes that this is
equivalent to

( s tudent Joe 3 .5 )
( s tudent Mary 3 .6 )
( s tudent Rachel 3 .0 )

provided that one already knows the column structure of the data. But this is easily
achieved:

( dec lare s tudent (name s t r ) ( gpa f l o a t ) )

This last statement resembles a conventional table-database table declaration.
One can go farther: there is no particular need to tag each row with the row-label

’student’. The most compact representation then appears to be the following:
( students − tab l e

( Joe 3 .5 )
( Mary 3 .6 )
( Rachel 3 . 0 ) )

This last form now obviously has the shape of a row-store. Each row is a tuple, all
tuples look alike.

This last form enables a rather conventional SQL query system to be defined. There
is a table definition, providing column types, and column labels (the labels are needed
for query/search), and the individual records (rows) in the table are uniform. The uni-
formity allows both for very compact storage and easy query.

The nature of query in these three styles, and what it implies for RAM consumption
and CPU use, is quite dramatic. They can have remarkably different performance pro-
files, and even some remarkable limitations in the kinds of queries that can be imagined
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or can be written. This is a more complex topic, and will be returned to later in this
text.

2.1.3 Tables and Algebraic Data Types

Category theory provides a modern foundation for a lot of thinking in computer sci-
ence,2 and one particular aspect of it, type theory, provides a theoretical framework for
the practical construction of data types.3 Much of this text presumes these theoretical
foundations are percolating in the background, and so a few brief words are in order.

An SQL Table declaration corresponding to the above example is

CREATE TABLE student (
name tex t ,
gpa r e a l

)

The interpretation is meant to be straight-forward: a table with two columns, one of
which is an unlimited length character string, the other a single-precision floating point
number. We could do the same in C++ (or Java, or any conventional object oriented
language) and write

c lass student {
char * name ;
f l o a t gpa ;

} ;

In terms of knowledge representation, these all express the same idea. The practical
differences between these are whether the structures are created at runtime (as they
would be for SQL, or scheme/lisp) or compile time (as they would be for C++ or
OCaml).

All of these are examples of “compound types” or “composite types”, or more
loosely, the “product type”, or, more narrowly, the “Cartesian product”.4 The Cartesian
product of two sets A and B, in set-builder notation, is

A×B = {(a,b) |a ∈ A and b ∈ B}
2See Wikipedia: https://en.wikipedia.org/wiki/Category_theory but perhaps much

more instructive and practical would be a book such as “Category Theory for Programmers”, Bartosz
Milewski (2019) available here: https://github.com/hmemcpy/milewski-ctfp-pdf.

3See Wikipedia, https://en.wikipedia.org/wiki/Type_theory for an overview of the ab-
stract theory of types, stemming from the nature of functors in category theory. The word “type” here is
the same as that in computer programming: the data type, see https://en.wikipedia.org/wiki/
Data_type for a review of the more concrete ideas.

4See Wikipedia https://en.wikipedia.org/wiki/Product_type and https://en.
wikipedia.org/wiki/Cartesian_product. Here, and in many subsequent footnotes, the reader
will be directed at Wikipedia pages. This is meant for clarity: if the reader is unfamiliar with a topic or
phrase, the Wikipedia page provides the requisite details. These Wikipedia references are not meant to be
hand-waving appeals to abstract concepts: they are meant to provide precise, formal definitions for the ideas
discussed here. The intended sense of the words and concepts brought up here are meant to be precisely,
exactly those described in the Wikipedia articles. Although this text attempts to be understandable without
prior, indepth understanding of that content, it would also be the case that all of the finer points and subtleties
will be missed, without this acquaintance. Read the Wikipedia articles. You should be familiar with what
they talk about.
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We want A to be the set of students and B to be the set of grades they could get; these
are not only different sets, but the types of the members of these sets are different. This
leads to the product type A×B where the A is the type of text strings, and B is the
type of numbers with decimal places. Members are again written as (a,b) or perhaps
(a : A,b : B) and are sometimes called “tuples”, for the obvious reason that the comma
is a great way of writing lists of things: lists are Cartesian products.

If this starts feeling circular, that is because it is: the SQL statement and the C++
class declaration above are both examples of Cartesian products. Tuples and records
are generically examples of products.

2.1.4 Category Theory and Coproducts

We’re going to jump the gun a bit, and briefly mention coproducts, as they are dual
to products.5 Examples of coproducts in programming are the “union” statement in
C/C++, or the variant type in other programming languages.6 In type theory, these are
referred to as “sum types”, and are dual to the product type.7 In type theory, these are
referred to as the sigma type Σ and the pi type Π,8 and in formal logic (set theory) lead
to the notion of the sigma-pi hierarchy.9

Category theory is sometimes called the “theory of dots and arrows”, and a central
notion is the “opposite category” Cop that is dual to the category C. In the opposite
category, the direction of all of the arrows are reversed. Naming-wise, the prefix “co-”
is prepended to names: thus products are dual to coproducts. The coproduct type and
the sum type are the same thing. Insofar as the product can be drawn as

the coproduct can be drawn as

It is common in category theory to leave the dots and arrows unlabeled, as often it
is more interesting to just talk about the shapes, rather than the labels. But to make it
clear, here is the product type again, with the labels:

5See Wikipedia https://en.wikipedia.org/wiki/Coproduct.
6See Wikipedia https://en.wikipedia.org/wiki/Union_type.
7See Wikipedia https://en.wikipedia.org/wiki/Tagged_union.
8See Wikipedia https://en.wikipedia.org/wiki/Dependent_type.
9See Wikipedia https://en.wikipedia.org/wiki/L%C3%A9vy_hierarchy and https:

//en.wikipedia.org/wiki/Descriptive_set_theory.
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The arrows are the “canonical projections” or the “projection morphisms” of the
product. The union type or coproduct will not be illustrated. The reader is encouraged
to imagine a C/C++ “union” statement and arrange the arrows appropriately.

The product and the coproduct, taken together, are often referred to as Algebraic
Data Types (ADT).10 In the text that follows, there will be lots of arrows, pointing both
forwards, and backwards. These can all be understood in terms of the type-theoretic
foundations sketched here. A more formal presentation of the type theory is deferred
to a different text in this series, describing the jigsaw puzzle-piece metaphor, and how
it is used to construct sheaves.

Not all of the arrows that will be drawn in the subsequent text can be understood
as category-theoretic arrows. Category theory has some fairly strict ideas about what
one can do with arrows, and thus, not every diagram will be a valid category. However,
many of them will be. The most important examples of arrows that can be interpreted
as category-theoretic arrows are the indexes on SQL tables (PRIMARY KEY and FOR-
EIGN KEY) and the opposite arrows in noSQL key-value databases. This is gleefully
articulated by Meijer and Bierman.[1] We shall need arrows going in both directions in
order to perform efficient metagraph queries, to be explained in later sections.

2.2 Graphs for Storing Data
The above listed three ways of storing attributes on a graph, and yet ignored the graph
itself. Thus, for completeness, lets draw the diagram of how this might be stored in a
graph.

Obviously, its “graphical” if it is drawn as follows:

In the above, the vertexes are labeled with s-expressions; the edges are not labeled.
It consists of two disjoint graphs; one of the graphs is used to encode the type informa-
tion used in the other graph. There are a large variety of choices that can be made in
how this is done. The above just shows one way; it might not be the best way, although
that depends on the problem domain.

Below shows another alternative, this time with labeled edges:

10See Wikipedia, https://en.wikipedia.org/wiki/Algebraic_data_type.
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The encoded data is the same; the encoding is different. Here, the schema makes an
explicit reference to the object being described. The cost is that the graph is no longer
of a uniform shape.

2.2.1 Mixed Representations

In both of the above examples, the graph store was assumed to have some distinct,
separate attribute store for each vertex, and possibly each edge. Thus, in a sense, this
is not a “pure” graph store, where each edge or vertex can only have an atomic sin-
gleton value on it (a single number or a single string). Of course, one could rework
the above graphs so that each vertex/edge does have just one single value on it. While
the simplicity of singleton-valued graphs is perhaps intellectually appealing, it proves
to not be practical for everyday use. Assuming singleton-valued graphs also has some
very strong implications on RAM and CPU use, and the ability to perform searches/-
queries. This point will be returned to below. In the meanwhile, this kind of mixed
model will be assumed: some data will be stored graphically, and some data will be
stored as complex attribute sets attached to the edges and vertexes.

Some historical hand-waving can be done to justify the origins of a mixed-model
graph store. In predicate logic, and in model theory, one distinguishes the predicates
and terms that one is discussing, from the truth values or valuations that can be assigned
to them. It is relatively straightforward to envision predicates and terms as trees or
DAG’s. The truth values are distinct from the graphs themselves; instead, they are
an assignment of true/false to each expression.11 A straight-forward example can be
found in Prolog: in the beginning, there are expressions; by means of inference, truth-
value labels are inferred. The truth values are not a part of the original graph; they live
outside of it, as an attribute.

Of course, things get interesting as soon as one leaves the domain of crisp-logic T/F
values, and considers instead valuations that are Bayesian probabilities. Some mon-
keying around then leads one to distinguish Bayesian probabilities from fuzzy logic
valuations. Other kinds of data worms its way in: confidence intervals; frequentist
counts; marginals. Some of this data is non-numeric, but are choices (e.g. true, false
or unknown) or explicitly symbolic (e.g. red, blue or green). It usually does not take

11This is the grand leap from Aristotelian, “classical” logic, to predicate logic. The disentanglement of
truth-valuations from propositions enables giant leaps in reasoning abilities. This in turn opens the ability to
further disentangle syntactic from semantic entailment, thus allowing a connection to grammar and language
to be made. The adjointness between grammar and graphs is precisely the core, central reason why properly
constructed graph databases are central to the pursuit of AGI.

13



long to realize the practical need for a mixed-model graph database, supporting both
good graph features, and also supporting complex attribute systems attached to each
edge/vertex.

2.2.2 Related Work

See also Grainger et al.[3] for a description of a dynamic edge-vertex database with
inverted indexes.
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3 Representing Graphs in RAM
In what follows, all data is assumed to live in-RAM; the on-disk representations do not
concern us. One reason for this is that a variety of disk management systems exist, and
work quite well at abstracting details. The earliest such is perhaps the Berkeley DBM12

and the Gnu gdbm.13 These have been followed by Google’s LevelDB14 and Face-
book’s extension RocksDB.15 It is usually not too hard to take an in-RAM database,
and layer it on top of one of these systems to obtain a disk-backed database. Of course,
there are numerous ifs-and-buts, which provide motivations to roll-your-own; these
will be ignored in this text.16

All the discussion in this text assumes uniform memory access; that is, a “flat”
memory topology, where any location in storage can be accessed with the same latency
as any other. Modern CPU’s are all NUMA machines;17 it is too much for this text to
dive into the issues that these pose.

3.1 Naive RAM Representations
Storing a set of vertexes in RAM is straight-forward. Since it is a set, one can use
either a hash-table, a b-tree, or even an array or list. For the discussion here, the precise
format is not directly relevant, and so a tabular format will be used to illustrate the
ideas. Again, the table rows might actually reside in hash-tables or b-trees, depending
on desired access and update performance.

The vertex table is straight-forward:

vertex id attr-data
1 ...
2 ...
3 ...
...

The goal of having a vertex id (which is necessarily a “universally unique id” or
uuid) is that it is required by the edge table. In the most obvious, direct form, the edge
table will have the shape

12See https://en.wikipedia.org/wiki/Berkeley_DB
13See https://www.gnu.org.ua/software/gdbm/
14See https://dbdb.io/db/leveldb
15See https://rocksdb.org/
16One must resist one wide-spread and common temptation: layering an in-RAM database on top of

another database that is RAM-hungry. This is at best counter-productive: for every byte consumed in one, one
risks a byte consumed in the other. As a result, one can only store half as much data, or must purchase twice
as much RAM. Despite the self-evidence of these last statements, such a layering is widely recommended,
on the basis of the supposed superiority of the lower layer. One must be particularly cautious if the lower
layer requires the use of network communications. Networking requires the kernel to become involved,
tasking-switching and performing IPC. This can easily become a performance bottleneck.

17See https://en.wikipedia.org/wiki/Non-uniform_memory_access
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edge id head-vertex tail-vertex attr-data
77 1 2 ...
88 2 3 ...
99 2 4 ...

This representation is perhaps too naive. To perform a graph traversal, i.e. to walk
from vertex to vertex, following only connecting edges, one needs to know which edges
come in, and which edges go out. Of course, these can be found in the edge table, but
searching the edge table is absurd: for an edge table of N edges, such a search takes
O(N) time. Thus, it is natural to incorporate a special index for edges into the vertex
table:

vertex id outgoing incoming attr-data
1 {} {77} ...
2 {77} {88,99} ...
3 {88} ...
4 {88}

Note that the incoming and outgoing columns hold sets: any given vertex may ap-
pear in more than one edge. They are sets, not lists, as the order is not particularly
important. They are not ’multisets’: any given edge appears at most once in the incom-
ing/outgoing sets. Suitable representations for sets include hash-tables and trees, each
with its own distinct RAM and access-time profile.

Table updates must be both thread safe and fast. It is easy to lock the table with
a mutex, but this can quickly limit the amount of concurrency. The latest lock-free
technology promises reasonable solutions; however, the technology remains immature.
There are several implementations of concurrent hash maps, but none for concurrent
multimaps (that also support erase). Likewise, lock-free tree implementations are ab-
sent; trees offer a considerably more compact storage format when tables are small.

3.2 Prelude to indexing
A conventional requirement for graph databases is to locate all nodes and vertexes
having some particular attribute. This opens a Pandora’s box of indexing schemes. The
opening of this box is deferred to a later section, but we can take a quick peak: suppose
one wants to find all vertexes where the attr-data has a field called “favorite song”.
Vertexes representing buildings and automobiles won’t have a “favorite song”, vertexes
representing people might, but not necessarily. Thus, there is a need for an index: a set
of all vertexes that have this tag. Every time a vertex is added or removed, this index
might have to be updated. Thus, adding indexes in this way incurs a CPU overhead. If
there are J indexes, then there is an O(J) CPU overhead for vertex insertion/removal.
There is also RAM consumption: an index containing K items requires at least O(K)
storage, and possibly O(K logK).
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4 Hypergraphs
A hypergraph is much like a graph, except that the edges, now called “hyperedges”, can
contain more than two vertexes. That is, the hyperedge, rather than being an ordered
pair of vertexes, is an ordered list of vertexes. The metagraph takes the hypergraph
concept one step further: the hyperedge may also contain other hyperedges. A change
of terminology is useful: the basic objects are now called “nodes” and “links” instead
of “vertexes” and “edges”.

Formally, a hypergraph is:

• A set of vertexes V = {v1,v2, · · · ,vM}

• A set of hyperedges E = {e1,e2, · · · ,eN} where each hyperedge ek is an ordered
list of vertexes drawn from the set V . This list may be empty, or have one, or
two, or more members.

A metagraph is very nearly the same:

• A set of nodes V = {v1,v2, · · · ,vM}

• A set of links E = {e1,e2, · · · ,eN} where each hyperedge ek is an ordered list of
nodes, or other links, or a mixture. They are arranged to be acyclic (to form a
directed acyclic graph).

It is convenient to give the name “atoms” to something that is either a node or a link.
Links are thus lists of atoms.

4.1 Hypergraph representations
The naive representation for the hypergraph is a straight-forward extension of the edge
table (the table on the preceding page above). The table below provides an example
that is shown in the figure following below.

hyper-edge id vertex-list attr-data
e1 (v1) ...
e2 (v1,v2) ...
e3 (v3,v4) ...
e4 (v3,v2,v1)

The vertex list may be empty, may hold one, or more vertexes. It is necessarily
ordered (and thus not a set) and may contain repeated entries (a vertex may appear
more than once in the list). In other respects, this edge table is quite similar to the edge
table for ordinary graphs.

As before, the ability to traverse the hypergraph (quickly) is a core requirement.
This means that, given a vertex, one must be able to quickly find the edges attached to
it. This requires modification to the vertex table given before.

Several choices are possible. One is to add a new column for each positional loca-
tion in the vertex list. That is, 0’th column holds the edges which have the correspond-
ing vertex in the 0’th position of the vertex list, the 1’th column likewise. This can be
read off from the table above:
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vertex id edge-set-0 edge-set-1 edge-set-2 ... attr-data
v1 {e1,e2} {·} {e4} ...
v2 {·} {e2,e4} {·} ...
v3 {e3,e4} {·} {·} ...
v4 {·} {e2} {·}

To actually store this table, one must have a data-structure that is a list-of-sets,
which can be a bit over-complex and challenging to use. It is easier to just mash all of
these into one set; that is all that is needed for hypergraph traversal. If the positional
location is needed, then it can always be looked up per-hyperedge. This is neither
technically challenging nor CPU-intensive: the arity of hyperedges is typically small,
based on real-world mappings with interesting datasets.18 Thus, the vertex table can
take the simpler form

vertex id incoming-set attr-data
v1 {e1,e2,e4} ...
v2 {e2,e4} ...
v3 {e3,e4} ...
v4 {e2}

Note that the vertex table looks a lot like the edge table, the only difference being
that the vertex-list in the edge table is an ordered list, while the incoming-set (the edge-
set) really is a set. Effectively, this is because a hypergraph is “almost” a bipartite
graph, having the form below, with the set E on the left being the set of hyperedges.

The boxes denote the fact that the hyperedges are ordered lists. The E and V ellipses
are the hyperedge and vertex tables. If the boxes could be collapsed to single points,
this would be a ’true’ bipartite graph; but they cannot be. The ordering is needed and
important.

4.1.1 RAM Utilization

One might wish to conclude: “Oh, but a bipartite graph is just a graph, so a graph
database is sufficient for all my needs.” At some abstract level, this is perhaps true; at

18We’ve worked with natural language, genomics and robotics datasets.
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the CPU and RAM-consumption level, it is not. So, in this figure, attributes (the attr-
data) are attached only to the vk and ek in the diagram; there is no attribute data attached
to the lines in this figure. What’s more, the lines in this figure are not directly recorded
in any tables; they are implicit only in the structure of the vertex and hyperedge tables.

Counting the memory usage is instructive. Lets assume that the size of the vertex-id
and the edge-id are the same – they are pointers or 64-bit ints – so each id requires 1
unit of RAM. Assume that lists are either null-terminated or record a length, so that a
list of n items requires n+1 units of storage. Lets encode sets as lists, to make counting
easy; let ⟨J⟩ be the average size of the attribute collection. The hyperedges shown in
the example figure then require 2+3+3+4=12 units of storage, plus 5 more for the hy-
peredge table itself, and 4⟨J⟩ of attribute storage. The vertexes require 4+3+3+2 units
of storage, plus 5 for the vertex-table itself, plus 4⟨J⟩ more of attributes. Summing
this, one obtains 34+8⟨J⟩ total RAM consumption.

For the general case, one has

NV (1+ ⟨J⟩+ ⟨NI⟩)+NE (1+ ⟨J⟩+ ⟨NO⟩)

where

NV Number of vertexes
NE Number of hyperedges
⟨J⟩ Average size of attributes
⟨NI⟩ Average size of the incoming set
⟨NO⟩ Average size of the vertex list

The average count of the incoming set is equal to the average count of the vertex
list, so we can approximate ⟨NI⟩ = ⟨NO⟩; the only reason to track these separately is
that one may use hash tables or trees for sets, whereas lists require arrays. This makes
the RAM usage slightly different for the two.

The equivalent representation as a graph requires

(NV +NE)(1+ ⟨J⟩)+NV ⟨NI⟩+NE ⟨NO⟩ for the vertex table
NV ⟨NI⟩(3+ ⟨Jnil⟩) for the edge table

Comparing the this to the expression for the hypertable, we see that the vertex table is
the same size as the entire hypertable. The ordinary graph representation also requires
the overhead of the edge table; here the ⟨Jnil⟩ is the cost of storing an empty attribute
list, and the factor of 3 comes from storing an ordinary edge-id and it’s two endpoints.
Graph databases can store hypergraphs, but incur a RAM penalty for doing so.

4.1.2 Storing hypergraphs in graphs, and vice-versa

If the only thing that one is storing are hypergraphs, then having a custom hypergraph
representation really is smaller than the equivalent bipartite graph: it dispenses with the
need for an explicit ordinary-edge table. Does this mean that there’s some magic, here?
No, not really. Every ordinary graph is a special case of a hypergraph, where the hyper-
edge always has arity two. To use an ordinary graph-store to record a single edge, we
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need 3+ ⟨J⟩ units of storage: the edge-label, and the two vertexes in the edge. To use
a hyperedge store to record a single (ordinary) edge, we need 4+ ⟨J⟩ units of storage:
the edge-label, the list of vertexes, and the list terminator. Thus, storing an ordinary
graph as a hypergraph requires NE more units of storage. This seems tolerable: for a
million-edge graph, and 64-bit pointers, this requires 8MBytes of additional storage.
On modern machines, the extra 8MBytes seems not all that large. There’s a bit of a
penalty in moving from graph storage to hypergraph storage, but it’s not that much.
Modern cellphones have 8GBytes of RAM...

Moving in the opposite direction is much worse: the penalty is NV ⟨NI⟩(3+ ⟨Jnil⟩)
which is surprisingly large. Assuming that ⟨Jnil⟩ = 1, then a million-vertex graph re-
quires ⟨NI⟩ times 32MBytes of additional storage. For uniformly-distributed graphs,
one might have ⟨NI⟩ of 3 to 10; for scale-free graphs of this size, ⟨NI⟩ might be
around 14; for square-root-Zipfian graphs (such as Wikipedia page views, or biologi-
cal datasets: genome, proteome, reactome datasets) the ⟨NI⟩ would be around 200,19

so we are looking at overheads in the gigabyte range. There is a huge cost of jamming
a hypergraph into an ordinary graph store.

XXX TODO This is making some rather strong claims about RAM usage, and
really needs to be quadruple-checked and strengthened. It’s a bit breezy and casual, as
written. XXX TODO.

4.2 Metagraph representations
The metagraph differs from the hypergraph in that now a hyperedge (link) may contain
either another vertex (node) or another link. Visually, this is no longer a bipartite graph,
but has the shape of a directed acyclic graph (DAG), such as the one shown below.

19The average size of the incoming set is

⟨NI⟩=
1

NV

∫ NV

1
n(v)dv

where n(v) is the number of connections to vertex v and NV is the total number of vertexes. For a Zipfian
distribution, this is

⟨NI⟩=
1

NV

∫ NV

1

NV

v
dv = logNV

while for a square-root-Zipfian, one has

⟨NI⟩=
1

NV

∫ NV

1

ANV√
v

dv = 2A
√

NV

The scale factor A is data-dependent. For Wikipedia page views, A ≈ 20, see https://en.wikipedia.
org/wiki/Wikipedia:Does_Wikipedia_traffic_obey_Zipf%27s_law%3F for graphs and
discussion. For genomics, see https://github.com/linas/biome-distribution/blob/
master/paper/biome-distributions.pdf where A is in the range of 0.1 to 0.3, depending on
the dataset. These last estimates are a bit glib, as the specifics of the datasets are quite subtle. Still, one may
conclude that these considerations have quite dramatic implications for graph stores.
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The primary difference between the above, and a ’true DAG’ is that the links are
ordered lists, represented as boxes in this diagram. For lack of a better name, this can
be called a “metatree”.20 The metatree can be converted to a DAG in two different
ways. One way is to collapse the boxes to single points. The other way is to dissolve
the boxes entirely, and replace a single arrow from point-to-box by many arrows, from
point to each of the box elements. Neither of these conversions are faithful. The first
erases the ordering within the box, while the second erases the grouping that the box
provides.

The node table for a metagraph is effectively the same as the hyper-vertex table on
page 18. For the example metatree diagram, it is

node id incoming-set attr-data
n1 {e1,e3} ...
n2 {e1,e2} ...
n3 {e2,e4} ...

The link table now requires both an outgoing-atom list, and an incoming-link set.
The incoming set can only consist of links; the outgoing list can consist of either nodes
or links.

link id outgoing-list incoming-set attr-data
e1 (n1,n2) {e3} ...
e2 (n2,n3) {e3} ...
e3 (e1,e2,n1,e2) {e4} ...
e4 (e3,n3) {·}

The link table adds a column, as compared to the hypergraphs, and thus resembles
the vertex table on page 16 for an ordinary graph store: It has both ’incoming’ and
’outgoing’ sets. There are two differences: the outgoing set is no longer a set, but a list.
The other is even stranger: the first column (the column of vertexes) has been replaced
by a column of links!

20Later on, metatrees will be called “Atoms”. An Atom is simply a term for something that can be either a
“Node” or a “Link”. As we haven’t yet clearly defined a Node or Link yet, the term “metatree” will suffice.
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Perhaps we are making the wrong comparison? Oddly, it also resembles the edge
table ( on page 16). For ordinary directed graphs, each edge is a vertex pair. The
vertices of an edge may be termed the ’head vertex’ and the ’tail vertex’; equivalently,
the outgoing vertex and the incoming vertex (or vice-versa, depending on how one
envisions the arrows). These two endpoints are replaced by the incoming set and the
outgoing list. Now, the first column remains the same: a column of edges, in both
cases. The overall four-column form remains the same.

Looking at this table, one might imagine that the naive graph tables, the hypergraph
tables, and the metagraph tables seem to have much in common. This is, however,
perhaps a bit deceptive, as performance considerations dictate the finer aspects of the
design. This will be looked at next.

The metagraph, having the general shape of a DAG, can clearly be wedged into an
ordinary graph store. Conversely, an ordinary graph is merely a metagraph that never
goes more than one-level deep, and whose links are always arity-two. Either format is
adequate for representing the other. The metagraph, much like the hypergraph, has no
need to explicitly declare the arrows in the tree; they are not stored, nor do they have
attributes. The RAM-usage considerations are much like those for the hypergraph. We
can conclude that it is quite efficient to store a graph in a metagraph, but that storing a
metagraph in an ordinary graph database pays a large penalty.
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5 Indexing
The above reviewed the basic structure of hypergraphs. Database performance depends
strongly on the use of indexes. Thus, a practical hypergraph database design must ad-
dress the use of indexes and how they moderate performance. This section will review
the structure of indexes, or rather, the alternatives one has for index representation.
The whole point of using a graph database, as opposed to a collection of tables, or
key-value database, or a JSON-database, is that the graph structure encodes something
important about the problem, something that cannot be easily achieved by doing table
joins or key-value look-ups. Some examples of “difficult” or “impossible” queries will
be looked at in a later section.

It is worth remarking that the so-called noSQL databases are effectively ’identical’
to SQL databases. They are ’identical’ in the sense of being categorical opposites: the
directions of all arrows are reversed. This was explicitly articulated in a famous paper
by Meijer and Bierman.[1] Much of the following uses an SQL-style notation; if the
reader is more familiar with key-value databases, then simply reverse the directions of
all arrows to obtain the equivalent discussion.

A few comments are in order regarding the SQL-style query notation. It has become
dominant. One can look at systems as different as SparQL and GraphQL, or even the
OGRE query language[2] (op. cit.) and clearly see not just the influence of SQL, but
in fact a nearly verbatim copy of it. There is a reason for this dominance, and it is
not (just) history. The reason is anchored (once again) in table representations, and the
presence (or rather, lack thereof) of inbuilt indexes in the tables.

This is a good place to make a heretical claim: SQL or it’s variants (GraphQL,
SparQL, ...) are NOT the best choice for a metagraph query language. The shackles of
*QL thinking are remarkably hard to escape. Even the principled, category-theoretic
foundations such as the Functorial Query Language (FQL)[4] fail to evade the problems
presented here, primarily because it is still table-based at it’s heart (FQL is reviewed
below, to illustrate several problems). A better alternative will become clear, once a
more careful examination is made of the role of indexes in queries.

In a metagraph database, just as in a table-based database, there will be certain
types of queries that are used a lot, and speeding these up through indexing is a key
requirement. How might this work, in practice? Let’s examine some queries, and see
how they might work.

5.1 Single attribute queries
Suppose one wishes to find all nodes with some specific attribute. Naively, this requires
walking over all nodes, examining the attached attribute structure, extracting a named
field from the attributes, and examining the value of that field. This is a task that
SQL databases excel at - for example, “SELECT name,salary FROM employees WHERE
department=’sales’;”.21 A graph database is not needed for this task. Nonetheless, this is

21The author would like to apologize for this seemingly non-sexy example. It is the stereotypical example
from database textbooks, and harks back to the 1960’s, when working out the fine details of management
science actually was a sexy research topic, and helped power the economic ascent of the Western world. It’s
importance should not be under-estimated: Ancient Rome was an agrarian civilization built on concepts of
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a plausible task, even for a graph database. The traditional solution would be “CREATE
INDEX ON employees(department);” which results in the creation of ordered pairs (D,{R})
with D the name of the department, and {R} the set of all records having that value.
The SELECT is then straight-forward: given D, it need only return {R}. The size of
this index is O(N) where N is the number of employees. This is necessarily so: one
cannot build an index smaller than the number of employees: every employee must be
in some department, as, conventionally, table-driven databases don’t have null entries
in rows.22 The point of the index is to replace an O(N) cpu-time search with an O(1)
cpu-time search. The price of doing so was an O(N) or O(N logN) RAM structure.

Table-based information has certain kinds of representational difficulties: imagine
the case of an employee with dashed-line reporting to multiple departments. This might
motivate one to cast an eye towards graph databases.

How might one accomplish indexing like this in a graph database? The simplest,
most naive answer is to create new, “privileged” vertexes, one vertex per department.
They are “privileged”, in that the associated attributes record one and only one value:
the name of the department. Basically, the vertexes are labeled, thus escaping the
overhead of crawling through a collection of attributes to find one in particular. One
also creates an unlabeled, attribute-free edge, from the department name back to the
full employee record. Finding all employees in “sales” is fast: one searches the vertex
table ( on page 16) to find the vertex “sales”, and then traces all outgoing edges to the
full record. The graph can be thought of as a table with a special “built in” index: the
index of outgoing edges.

This is to be contrasted to a conventional table database. The contents of a conven-
tional table (row) database, after indexing, is illustrated below. Before indexing, the
vertexes v6,v7,v8 and edges e1,e2,e3,e4,e5 simply did not exist. The act of indexing
creates these vertexes and edges. The documentation for conventional table databases
does not ’talk about’ vertexes and edges; but, de facto, this is how system architects
think about things. When they think about creating an index on a table, this is what
they think of.23

hierarchical organization; organizational hierarchies will continue to describe reality, including AGI. Org-
charts are boring but important.

22Well, in practice, they often do; but now imagine the task of finding all records with a null value in some
column...

23This is not meant to be a psychological assessment; rather it is meant to provide a translation between the
’algebraic’ form of typed commands sent to relational DB’s, and an equivalent ’geometric’, visual form. It is
the denotational semantics of the index. The geometric form can be understood as being either metaphorical
and abstract, or it can be taken literally, as a collection of pointers and the things they point to.
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The size of this structure is again O(N) for N employees, assuming every em-
ployee is indexed. More precisely, it is O(N) +O(ND) where ND is the number of
departments.

This diagram exposes some unusual possibilities: If one is interested only in sales,
then not every employee has to be indexed! In a graph database, it is possible to create
only one vertex, “sales”, and hook up edges to only that one. Effectively, this is a partial
index, with correspondingly less RAM usage! This is not possible in a naive table
system; one needs a system which explicitly supports partial indexes. As it happens,
most-all SQL systems do. An experienced SQL DBA knows exactly how to achieve
this effect: “CREATE INDEX ON employees(department) WHERE department=sales;” This is
not a big deal, and so, here, at least, graphs do not offer any particular advantage, other
than perhaps some conceptual clarity. Under the covers, the SQL databases effectively
have more-or-less the same format, although their internal graph-based nature is ad
hoc, evolved over the decades and mostly hidden from the user. There are no explicit
graph-walking directives in SQL.24

The key point here is that, in a properly-designed graph database, there is no generic
need for “indexes” per se, they can be conjured into being at any time, as they are ulti-
mately graphical in nature. There’s even a bit of an advantage: in the graph database,
the graph structure of the index is explicit, and can be walked.

5.2 Space and Time
Comparing RAM-usage, at first glance, there is no particular difference between the
SQL and the graph database. Naively, both require O(N) for N employees, plus
O(ND) for ND different departments. Looking more carefully, there are also the edges
e1,e2,e3,e4,e5. In the SQL case, these edges were implicit in the index: after all, the
index was a collection of ordered pairs (D,{R}): the edges run from D to {R}. In the
graph representation, these edges become explicit: that is, they appear in an explicit
table, with attached attributes, even if the attributes are null. Shades of hypergraphs!
Why, this was exactly the same situation as with the hypergraph! Squinting more care-
fully, the indexed employee table is nothing other than a bipartite graph! Thus, one
can effectively say: the indexes in an SQL database are de facto hypergraphs under the
covers, even though no one ever explicitly says so. The bipartite nature of the graph
makes this overt. Surprise!

The explicit hypergraph representation does cost more than its implicit form in
SQL databases. An SQL index can be a b-tree or hash table; the only thing that the
b-tree/hash table needs to store is the row ID. For a hypergraph, we have imposed
the additional requirement that hypergraphs must be rapidly traversable. This forces
the storage of the incoming set in addition to the outgoing set. Hypergraph stores
necessarily use more RAM than equivalent SQL tables. But recall why we did this:
rapid graph traversal. Graph traversal in SQL is easy for trivial graphs, but becomes
profoundly challenging for anything more complex. Mashing up “SELECT INTO” with
“JOIN” is tough. Mashing it up two levels deep is tougher. Can you count to three? It
would be a significant challenge, even for experienced DBAs. Some more examples of

24Aside from table joins; more on that later.
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challenging queries will be presented later.
Suppose you are clever enough to write deep table joins in SQL. Is your query

planner as clever as you? Most SQL systems have a query analyzer or query compiler,
which takes a given SQL statement, analyzes its structure, and then creates a plan as
to which data shall be fetched first, and in what order. Poor planning results in poor
performance, sometimes disastrously poor performance. For large databases, there has
been a vast (multi-billion-dollar) investment in sophisticated query planning. Walking
graphs, represented in terms of tables and indexes, is not for the faint of heart.

CPU usage considerations are harder to dissect. To avoid discussions of network
overhead in client-server architectures, its easier, here, to limit discussions to databases
that run in the same address space as the application. Thus, for SQL bench-marking,
one might look at SQLite, which runs embedded, rather than Postgres, which requires
network interfaces. Queries usually begin life as text-strings, for example, “SELECT
name, salary FROM employees WHERE department=’sales’;” was a text-string that had to be
parsed to figure out “what to do”. Let’s assume that this cost has been amortized, and
that there is a way to get a handle to a query that has already been analyzed. Query run-
time execution is then a matter of finding the vertex “sales”, tracing the edges to each
of the employees, and completing the work by extracting fields for each employee. If
vertexes themselves are indexed (as they should be), then locating the vertex “sales” is
either O(1) for hash tables, or O(logND) for trees. In the hypergraph representation,
finding the set {R} of employees in “sales” comes for free. That is, if you have “sales”,
you already have the set {R} and no further lookups are required. The dominant cost is
almost surely the procedures needed to extract the desired information from the record
attributes.

5.3 Partial indexes and metagraphs
The power of partial indexes together with metagraphs begins to reveal itself when one
considers query and search optimization. Some key aspects of this are reviewed in the
next two sections.

Partial indexes reveal their utility in another way. Sticking with the management
example from above, consider extending and looking at organizational structures (org
charts).

Conventionally, corporations, political and military organizations are organized hi-
erarchically, with divisions reporting to executives, departments rolling up into divi-
sions, and so on. This is precisely the structure of a metatree. It is tempting to gloss
this, and say that the org chart is a tree, or perhaps a DAG. It is not! It is a metatree,
and confusion arises because a metatree can be collapsed to a DAG in several differ-
ent ways. So, consider a division chief who manages a line item. One can draw the
org-chart several ways: by drawing an edge from a manager to each (named) employee
that they manage, or from the manager to a functional box labeled with the function.
Employees are then grouped inside these functional boxes. This is shown below.
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This is manifestly in the shape of a metatree. It can be collapsed down to an or-
dinary directed tree in several ways, left to the imagination of the reader. The point
is that the natural structure of an org chart is not a naive tree; it contains a bit more
complexity than that, and is far more readily represented with a metatree.25

The conceptual jump here is then: rather than stopping with a single-level hyper-
graph, which had “tables” and “indexes” that were “on top of tables”, one can go
further: indexes of indexes: namely, the metagraph.

5.4 Normalization
The implication for RAM usage is similar to that of “database normalization”. In a
naive, un-normalized table format, one might store, for each employee, the employee
name, the department, the 2nd line, the division and the name of the company. This is
a bit silly in terms of storage: 5 columns are needed; for N employees, this requires
O(5N) storage. One “normalizes” by storing only the employee-department relation-
ship with a table of O(2N) in size, and the remainder of the org chart in a separate
table, also of two columns, encoding the directed tree reporting structure. This offers
a huge space savings. For ND departments/divisions, this second table is O(2ND) and
clearly, 5N ≫ 2N +2ND.

Look-ups in a normalized database proceed through table joins. To find all employ-
ees in a division, one looks up what 2nd lines report to the division, what departments
report to the second line, and what employees report to the departments (this is the
’transitive closure’ of a recursive relation.) The indexing proceeds just as described
before. The table joins are an ad hoc graph walk. The SQL for this is a bit nasty,
but still effectively human-readable: “SELECT employees.name FROM employees, orgchart
WHERE employees.department = orgchart.dept AND orgchart.division = ’marketing & sales’;”.26

This SQL snippet is oversimplified by quite a bit, but it does convey the general spirit
of the thing. It is attempting to specify a graph-walk without explicitly acknowledging
that there is a graph hidden under the covers.

The key message here is that metagraphs retain the key benefits of table normal-
ization, while making the graphical nature of indexing explicit. They do even more:

25This is hardly the only way to represent an org-chart with a meta-tree. One could put the department
titles into boxes of their own, as well as perhaps the names of the actual people, adding even some dashed-line
cross-functional reporting structures. The point here is that it is not “just a tree”.

26Its nasty, because we have to “join” different rows in the org chart table. SQL does not offer any basic
primitives for joining different rows together; this requires a good bit of creativity on the part of the DBA.
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they effectively “automate” table normalization. To some fairly large degree, you no
longer have to explicitly think about table normalization. It “just happens naturally”, as
you organize data into graphical form. This is not because there is some super-clever
algo running under the covers, performing magic normalization. It is instead purely a
byproduct of changing one’s perspective about data and it’s structure.

Comparing metagraphs to graph stores, one sees a different improvement. By dis-
carding the edge table ( on page 16) that the graph store demands, and the associated
edge attributes, one gets the representational compactness of indexes, without paying
a high price for them. The price one does pay (the incoming set of the metagraph
link table on page 21) enables something quite dramatic: an easy graph walk, which is
anything-but-easy in a traditional SQL database.27

5.5 Index Maintenance
Indexes are central to defining the relationships between bits of data. But such relation-
ships cannot stay fixed: as a database is used, reasons are found to add new relation-
ships, and to modify or delete existing relationships. Practical issues arise: changes
must be made without corrupting existing data or (unintentionally) losing information.

This proves to be a particular challenge to SQL-style databases, and it is educa-
tional to review the reasons. In an SQL system, the relationships between bits of data
are defined by the initial database architect: the person who first creates the table defi-
nitions, the “database schema”. Changes to those definitions (additions of new tables,
the reorganization of columns in existing tables, etc.) requires a process of “data mi-
gration”. It is conceived in this way, since one is changing not just a table definition,
but one is also moving all of the rows in that table. This is a CPU and RAM-consuming
process: for tables with millions of rows, or more, this may take hours or days. When
migrating datasets, it is very important to not accidentally corrupt the structures con-
taining the data through poor data migration design (e.g. by unintentionally dropping
columns, or by breaking primary-key-foreign-key constraints, or breaking normaliza-
tion by duplicating data). A means of performing database schema migrations in an
accident-free way is important. Defining a principled approach to table rewrites is even
better.

The Functorial Query Language (FQL) provides such a principled approach.[4] It
is reviewed below. The key observation here will be that data migration (database
schema migration) can be thought of as a form of rewriting, analogous to the idea
of term rewriting or graph rewriting. Looked at more strongly, this is more than an
analogy: table rewriting is graph rewriting. The idea to be examined here is this: If one
keeps the adjoint functors Σ ⊣ ∆ ⊣Π of FQL, but discards the SQL tables on which they
are founded, can the FQL approach provide a principled means for rewriting graphs?

27OK, sure, it becomes “easy” if you are willing to write PL/SQL, or embedded Python, if your database
supports it. Otherwise, you have to descend into C/C++ (or your favorite programming language of choice),
and once you are “programming”, it is no longer “easy”. A properly designed graph query system makes
(should make) graph walks “easy”. A properly-designed metagraph query system makes graph walks invisi-
ble (see next section.) And, to take one quick pot-shot: GraphQL is not properly designed. It is effectively a
query anti-pattern. It took what is nice about SQL, but then utterly failed to take into account anything and
everything that this text is trying to explain. It is not for nothing that the OpenCog AtomSpace differs so
dramatically from everything else out there.
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The answer appears to hinge on the question of how indexes are conceived of within
the system, how they are maintained.

5.5.1 Data Migration and Graph Rewriting

The concept of data migration in database practice refers to the idea that, after a system
architect or data architect has designed some database, and a company has populated
that database with millions of records, at the expense of millions of dollars, it is realized
that the original design of the database schemas are inadequate to meet future business
needs. The data needs to be migrated to a new set of schemas.

It is often the case that the data is so voluminous, and so valuable, that it will take
months of system architect effort and weeks of management review before one can
press the button and cross one’s fingers, hoping that nothing is lost or corrupted. Mis-
takes are not hard to make: some important PRIMARY KEY - FOREIGN KEY constraint
might be accidentally dropped. Maybe some column will be forgotten about. Maybe
normalization will be broken, resulting in duplicated data appearing in multiple tables,
with no means of keeping that duplicated data in sync, leading to long-term data rot.
It sure would be nice to do data migrations in a less time-consuming, less error prone
fashion. This requires a principled approach; but how?

Well, what is data migration really, at the most abstract level? It is a graph rewrite.
The initial database design should be understood to be a graph, with the various key
constraints between tables being the directed edges of the graph. The revised database
design, with its new table schemas, is a different graph. The goal of the data migration
is to rewrite the first graph into the second. Data migration is in fact graph rewriting,
but narrowly conceived.

Looked at this way, the situation is jarring. In the former case, data migration is
a difficult, time-consuming manual process playing out at a human timescale. In the
later case, any given graph rewriting system or term rewriting system is expected to do
it’s operations in milliseconds.28 How is it these two scales are so different?

The idea of doing data migrations in hours instead of days is radical; the idea
of doing it automatically at millisecond speeds is revolutionary. Moving forward in
the domain of knowledge representation requires bridging this gap. If one has data
represented one way, one must be able to efficiently, rapidly and easily transform it into
a different representation. Even more: for AGI, such rewrites must be fully automated
and automatic.

To make data migration easy, one needs to be able to represent the graph rewrites
within the system itself. Later sections will describe a metaquery system that accom-
plishes this. This is in contrast to the situation with SQL. The graph that is the schema
of an SQL database is not itself stored in a table, nor is it queryable with SQL com-
mands. When a DBA hand-crafts an SQL expression to perform a graph rewrite, they
do not store that expression within the database itself; it exists externally, in a distinct
location. By working with metagraphs, it turns out that it is not hard to craft a query
system in which the queries themselves live as data within the database.

28See, for example, Maude,[5] a term rewriting system that stands on it’s own, disassociated from any
other processing system.
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5.5.2 Graph Rewriting and Indexes

The second part of automating rewrites of knowledge representation schemas is to pro-
vide a principled approach. One such principled approach can be found in the Func-
torial Query Language (FQL).[4] This theoretical development has a working open-
source implementation called Categorical Query Language (CQL).29 The approach is
founded on category theory,30 and so the remainder of this section will switch to that
language. The reader unfamiliar with category theory is encouraged to learn it.31

Basic definitions are in order. A database schema C is a category. The objects
of that category are the tables; the morphisms of that category are the indexes.32 For
example, given any particular row in some table, the index provides a map from that
row to some other row in some other table. It provides the morphism between them.
The morphisms are pointer-chases, in that both are composable: given some row, one
can chase the pointer to some other row in some other table, and then repeat this again.

An instance of a database is a functor C → Set. That is, the database schema C
itself is just the collection of empty tables, and the indexes between them. To populate
a database with data, one must specify what goes into it. For example, given a table
of employees, there is a corresponding set of employees that go into that table. The
mapping is from C to Set and not the other way around, because it is “forgetful”: the
morphisms in Set are functions from one set to another, but they do not describe how
the individual elements of the set are to be paired up: those relationships are forgotten.
All that remains of the database index morphism is the idea that it connected one set to
another, without specifying how the elements of the set are connected.33

Two different database instances I and J (for the same schema C ) differ by the
addition, deletion or modification of rows in various tables. The relationship between
them can be phrased as a homomorphism: it maps tables to tables (obviously) and
rows to rows. Deleted rows are mapped to the “empty row”, and modified rows to their
modifications. Added rows are not part of the homomorphism. Since the instances I
and J are both functors C → Set, the homomorphism between them turns out to be a
“natural transformation” I ⇒ J in that it obeys all of the requirements for being one.34

This allows the category C -Inst to be defined, the objects of which are the instances I,
and the morphisms are the natural transformations I ⇒ J.

A schema mapping is a functor F : C →D from a database schema C to D . To be a
functor, it must provide maps between the objects of each: tables(C )→ tables(D) and

29See https://github.com/CategoricalData and https://www.categoricaldata.
net/.

30See Wikipedia, https://en.wikipedia.org/wiki/Category_theory.
31A reasonable introduction, adapted for software developers, is “Category Theory for Programmers”,

Bartosz Milewski (2019), available at https://github.com/hmemcpy/milewski-ctfp-pdf.
32More precisely, the category is the database schema; see Wikipedia https://en.wikipedia.

org/wiki/Database_schema. This includes not just the tables and the indexes, but also all of the
triggers, stored procedures, queues, views and other elements. For simplicity, we consider only the tables as
the objects, and the integrity constraints (the indexes) as the morphisms.

33See Wikipedia, https://en.wikipedia.org/wiki/Category_of_sets and https://
en.wikipedia.org/wiki/Forgetful_functor.

34See Wikipedia, https://en.wikipedia.org/wiki/Natural_transformation. It is a
non-trivial and worthwhile exercise to verify that two different database instances, defined as functors, obey
the requirements for being related to one-another as a natural transformation.
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between the morphisms of each: indexes(C )→ index-paths(D). A data migration is
then a lifting of this functor F to a functor on C -Inst to D-Inst. The FQL paper points
out there is not just one such lifting, but three: a contravariant functor ∆F and it’s left
and right adjoints ΣF and Π f . The contravariant functor ∆F is defined by composition
with a particular database instance:

∆F :C -Inst → D-Inst
I 7→ ∆F I = I ◦F

where a specific database instance

I : C → Set

is mapped to
∆F I : F (C )→ Set

where (of course, by definition) D = F (C ), and so one can write

∆F I : D → Set

This is perhaps clearer with a diagram:

C D

Set

F

∆F I
I

Adjoint to the functor ∆F is the left-adjoint functor ΣF ⊣ ∆F , which acts as giver of
an initial mapping, and the right adjoint ∆F ⊣ΠF which provides a terminal mapping.35

These two functors then provide an efficient, formulaic way to migrate data from one
database schema to another.

But what does all this abstract nonsense mean, anyway? Informally, all it is saying
is “keep your indexes straight, and you’ll be OK.” Understanding this is best served by
an example.

5.5.3 A Data Migration Example

TODO: provide worked example. Conclude: its still tables, in the end. That is,
FQL/CQL is formulated explicitly in terms of tables. The abstraction, in terms of
category theory, does not escape the underlying table structure. Yes, the schema map-
ping F : C → D is a pure graph re-write. However, the functor ∆F acts on tables, by
design, since C -Inst consists of populated tables (by design). The functors just tell
you how to not accidentally lose PRIMARY KEY - FOREIGN KEY constraints. It does not
provide particular insight into graph rewriting, in general.

35See Wikipedia, https://en.wikipedia.org/wiki/Adjoint_functors. See also
https://en.wikipedia.org/wiki/Initial_and_terminal_objects.
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6 Metatrees and String Representations
The discusion of metagraphs above has presented their abstract graphical structure, and
what the corresponding in-RAM data structure looks like. Another important represen-
tation is the string representation: how can a meta-tree be written as a text string? The
proper representation as a string can be mildly confusing. Articulating this carefully is
rewarding. Consider again the generic example:

This can be written as (e4 : (e3 : (e1 : n1,n2) ,(e2 : n2,n3) ,n1,(e2 : n2,n3)) ,n3) or
perhaps, with indentation, but without parenthesis, so as to improve readability (so,
Python-style, i.e. with “significant whitespace”):

e4 : e3 : e1 : n1
n2

e2 : n2
n3

n1
e2 : n2

n3
n3

Alternately, in Unix directory style (URLs), with slashes. Each ek and its trailing slash
denotes a subdirectory. Each nk denoting a file: the terminal leaf in the tree. Ob-
serve that the same file appears in multiple locations in the directory tree. This is
accomplished with either hard or soft links (’man ln’). It is somewhat uncommon for
ordinary users to do this, but is a widespread technique used in package installs.

e4/ e3/ e1/ n1
n2

e2/ n2
n3

n1
e2/ n2

n3
n3
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Either of these requires understanding indentation. Yuck. Even if you understand the
indentation, the above are still hard to read. Perhaps JSON will do:

{
L ink : {

L ink : {
L ink : {

Node : " one " ,
Node : " two "

} ,
L ink : {

Node : " two " ,
Node : " th ree "

} ,
Node : " one " ,
L ink : {

Node : " two " ,
Node : " th ree "

}
} ,
Node : " th ree "

}
}

Better, but still a bit awkward. Perhaps all the links can be replaced with square brack-
ets, so an array of arrays? Doing this will convert the JSON into funny-looking s-
expression. This will be presented shortly, below; in the meantime, it is left to the
reader’s imagination.

A strange thing has happened here: the nodes n1,n2 and n3 appear in multiple
places, yet they are supposed to be “the same thing”. Likewise for e2, which appears
twice, but is meant to be the same e2 both times.

Consider representing the metatree with JSON (or something similar, e.g. YAML)
The duplication presents a difficulty for JSON. Ordinary JSON does not support object
references; there is no way to say the multiple e2’s and the nk’s are “the same thing”.
There is an IETF draft standard for references,36 but it is not widely used. Thus, al-
though metatrees can be represented with JSON, some care must be taken when parsing
them: one must find all repeated objects and understand them to be universally unique.
That is, one must replace all repeated objects by universally unique references.

6.1 S-expressions
Let return to the string expression (e4 : (e3 : (e1 : n1,n2) ,(e2 : n2,n3) ,n1,(e2 : n2,n3)) ,n3).
What’s wrong with just writing it as a basic s-expression? It appears to be entirely un-
ambiguous to just drop the colon and the comma. It becomes:

( e4 ( e3 ( e1 n1 n2 ) ( e2 n2 n3 ) n1 ( e2 n2 n3 ) ) n3 )

Can’t get any shorter than that.
This is not exactly an ’ordinary’ s-expression, though. Key differences:

36See https://datatracker.ietf.org/doc/html/draft-pbryan-zyp-json-ref-03
and https://redoc.ly/docs/resources/ref-guide/
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• Every open-paren must be followed by a link ’ek’: this is what a meta-edge must
necessarily be.

• Every node is globally unique. That is, each time the node ’n2’ appears in this
expression, it is exactly the same ’n2’, instead of being a different instance. Re-
ferring back to the metagraph node table ( on page 21), we see that there is only
one true instance of ’n2’: it just has one set of attributes on it. When parsing the
s-expression, whichever apparent copy of ’n2’ that we grab hold of, the attributes
attached to it will be the same.

• Every link is globally unique. For example, the sub-expression ’(e2 n2 n3)’ ap-
pears twice; in both cases, it is exactly the same subexpression. This is clear by
referring to the metagraph link table ( on page 21): there is really just one copy.

We conclude that s-expressions offer a marvelous compact string representation for
metagraphs. Yet one should not be mislead; these are not ordinary s-expressions.
This will be further amplified below, when considering queries performed over s-
expressions.37

6.2 UUID’s
Because each node and link is globally unique, it is very tempting, at this point, to say
“oh, hey, just use universally unique identifiers” (UUID’s). This is good enough for
local address spaces; if nothing else, then an ordinary C/C++ pointer can be (effecitvely
is) a UUID for the object. But, when writing a text string, what UUID shall one use?
How should they be issued? Where should they be kept? These are difficult questions,
with no easy or obvious answers.

It gets worse. What happens if there are two users, on opposite sides of the planet,
and they need to issue a UUID for an Atom? This is a famous issue in computing:
UUIDs cause major, fundamental problems when considering network-distributed stor-
age. The problem is of UUID collision. One solution to avoid UUID collision is to
have a single centralized atomic issuer of ID’s that can guarantee uniqueness. This
introduces a single, centralized bottleneck. Another solution is to use cryptographic
hashes. Each meta-tree string can be hashed down to a number. To avoid collisions
due to the birthday paradox, the hashes have to be quite large. For 1 million distinct
atoms, a 64-bit hash and crossed fingers should be enough; uncrossing the fingers re-
quires at least a 96-bit hash. For a trillion atoms, a 128-bit hash is just barely enough

37The word “representation” is being used here in the formal sense. For example, in group theory, one
can talk about a specific group, as a “thing in itself”. One can also have a “matrix representation of a
group”, which is a collection of matrices that behave the same way as the group. The matrix representa-
tion will also have additional properties and relationships that the group does not have. These are termed
“accidental relationships”. Likewise here: there is the metagraph as the “thing in itself”, and the represen-
tation of it as an s-expression. The s-expression has additional aspects to it that the metagraph does not
have. Also, the s-expression can also represent other things, completely different things, that are not meta-
graphs! Similar remarks apply to the graphical drawings: they are not the “metagraph in itself”, they are a vi-
sual representation of it. See Wikipedia, https://en.wikipedia.org/wiki/Representation_
(mathematics).
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and a 192-bit hash is preferred. These eat up RAM (as compared to pointers) and the
computation of cryptographic hashes requires significant CPU overhead.

Just how big is a 64-bit hash, vs. the expression it is standing in for? Well, 64-bits
is 8 bytes. Suppose that the data that one was storing consisted of English words (there
are about a million of them, if you include geographical place names, product and
corporate names, historical events and a smattering of Latin and foreign loan-words.)
The average length of these is about six letters, thus six bytes; seven if including the
null terminator. How about the names of genes and proteins? These are not particularly
lengthy either. “Ah, but tree structure!” you might think. All those parens, they need
to be counted too! If you dump those plain-ASCII (plain-UTF8) s-expressions to a
file, and then run gzip on it, or better yet, bzip2 or 7z, you find that those raw string
s-expressions compress very well, outperforming by a wide margin the 64-bit UUID
hash.

“But”, you say, “we can’t compress; the data lives in memory, not a file!” Ah,
yes, this is true. The in-RAM representation is explosively larger than the string s-
expression form. Reviewing the two tables on page 21, each appearance of a node or
link in those tables must be a (64-bit) pointer. The example metagraph being worked
here is two levels deep, and is quite ’small’. Yet, counting the edges in the drawing
of it, there are ten edges. Each edge is bidirectional: there are pointers going both
ways; those 20 pointers are required, or 160 = 20×8 bytes. Plus three bytes each for
the null terminated strings ’n1’, ’n2’ ... ’e1’, ’e2’ for a total of 160+ 24 = 184 bytes
minimum. The string-length of the string ’(e4 (e3 (e1 n1 n2) (e2 n2 n3) n1 (e2 n2 n3)) n3)’
is 48 characters: 48 bytes. The s-expression representation is four times more compact
than the in-RAM representation!

Finally, there is the problem of the UUID-to-meta-tree mapping. Where is it stored?
New meta-trees could be added weeks or months later. Is there some UUID-to-meta-
tree mapping service, live, available on-line 24x7? What happens if it goes down? How
is it kept unique? With locks? How many UUID’s per second can be issued? What
happens if it gets corrupted? Who has spare copies? Do byzantine generals show up
and ruin the day? How much storage does this all require?

To conclude: having hashes around can be useful, as hashes are needed for hash
tables. However, conceiving of them as if they were truly universally-unique ID’s is
problematic in a dozen different ways. By contrast, each and every s-expression really
really is globally unique. There is only one of any given kind! No centralized authority
was needed to issue this unique string! Anyone can mint it at any time, at very low cost!
If forgotten, it can be recreated! And it’s ASCII representation, compressed with bog-
standard compression routines, is formidably tiny. UUID’s are horrible; s-expressions
are smart.
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7 Insertion, Deletion and Mutability
When a metatree is added to a metagraph, a scan must be made to determine if the tree,
or any subtree, already occurs in the metagraph. How might we know this? By looking
it up! But where is this stored?

One concludes that there is really only one option: there has to be a mutable, top-
level index that holds all of the meta-trees in the metagraph. In a sense, it is the one
link to rule them all. Put differently, a metagraph store is, de facto, just a store for one
single mutable meta-tree.

The word ’mutable’ was used several times in the last few sentences. This is im-
portant. For all other meta-trees, it is not only convenient to treat them as if they were
immutable, it becomes a necessity. Returning to the example meta-tree:

( e4 ( e3 ( e1 n1 n2 ) ( e2 n2 n3 ) n1 ( e2 n2 n3 ) ) n3 )

Suppose one wishes to change “just one” of the ’n3’s into an ’n5’. But which one?
They are, after all, all the same ’n3’, so if edited, they all change together, atomically.
Suppose now that this meta-tree is a subtree of something larger and more complex.
Performing an edit, changing the ’n3’ into an ’n5’ in this meta-tree requires examining
the incoming set of this tree, and determining what to do in each case. This might be a
non-trivial decision procedure. Should each of these larger trees get the new, modified
version, or should they keep the original unmodified version? If the latter, then the
unmodified version becomes de facto immutable, and the new, modified version just
becomes a completely new meta-tree (“copy on write.”)

So, immutable meta-trees are quite all right. Besides avoiding the decision problem
of what to do with the incoming set, there are some much more mundane advantages.
Immutable meta-trees can be traversed lock-free; there is no concern that one thread
is traversing it, even as another thread is altering it. The importance of having small
structures being lock-free cannot be overstated.

This all changes when one considers the top-most, master index. It must be muta-
ble. It must be possible to add new trees, and remove stale ones from this master index.
Otherwise, it cannot be called a database!

Yet, oddly, this top-level index/table looks exactly like any other metatree. Yes,
it’s large: it may have many millions of (immutable) subtrees in it. But it itself is just
another tree, and there is no particular reason why it cannot be the subtree of yet other
trees. The only difference is that it is mutable.

Thus, we’ve identified two fundamentally different utilities, serving different pur-
poses, yet both having the same structural form. The mutable form is a ’database’. The
immutable form is the ’data’. In all other respects, they are the same.

Within the OpenCog system, the mutable form has been historically called the
’AtomSpace’. It can be stacked and nested and used to form linear or Y-shaped or
diamond-shaped inheritance diagrams, however one wishes. The immutable Nodes
and Links have been called ’Atoms’, as a stand-in term for something that can be ei-
ther a Node or a Link.
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7.1 Metagraph mutability vs. SQL table mutability
There are two ways to delete a row from an SQL table. Either one already knows the
“PRIMARY KEY” of that row, and one asks for that key to be deleted, or one does not. If
one does not know, then one has to “SELECT key FROM employees WHERE name=’Agent
Smith’;” and present the resulting key to be deleted. Yes, of course, this can be done
with a single statement: “DELETE FROM employees WHERE name=’Agent Smith’;” but this
only hides the fact that, without the key, nothing can be done.

In SQL, effectively all tables have a primary key: it is the master key for each row.
For the discussion above, it is effectively the UUID of the row. As the de facto UUID
of SQL systems, it suffers from all the UUID drawbacks previously reviewed. SQL
databases are notoriously hard to shard across multiple network nodes. Consistency
and atomic updates are hard: this is because there is effectively one centralized bot-
tleneck for issuing and locking UUIDs. Such locks are needed during updates, even
if only for the “short” duration of the ’COMMIT’. This bottleneck, and the difficulty of
resolving it, is the foundation stone on which the ACID vs. BASE debates are built.

How does this compare to the one mutable index of all immutable meta-trees?
Well, there are at least three ’obvious’ ways in which the deletion of a meta-tree could
be implemented.

• If the master index is a hash table or a tree of raw memory pointers, and one has
the raw pointer to the memory to be deleted, the deletion can be immediately and
directly performed. This is analogous to already knowing the primary key of an
SQL table row.

• If the master index is a hash table or a tree of abstract indicators, and one has the
abstract indicator of the meta-tree to be deleted, the deletion can be immediately
and directly performed. Unlike the case of UUID’s, there are abstract indicators
that can be computed uniquely and in a relatively rapid fashion. An example
of this is the Merkle tree. It is ’decentralized’, in the sense that, no matter who
has a copy of a given meta-tree, or where it might be located, everyone will
agree as to what it’s Merkle tree hash will be. It is not ’unique’, in the sense
that there might be hash collisions. However, for practical use in the database,
being collision-free is not so important;38 being computable in a decentralized
fashion is. It avoids the UUID/primary-key pitfall. This certainly turns the ACID
vs. BASE debate a bit on it’s side. The current actual OpenCog AtomSpace in-
RAM implementation uses Merkle trees.

• If the master index is an ordered key-value-store (OKVS)39 of s-expressions,
and one has the s-expression corresponding to the meta-tree to be deleted, the
deletion can be immediately and directly performed. But it is already apparent
that it is easy and cheap to compute (in a decentralized fashion) the s-expression
corresponding to a meta-tree. This is effectively a variant of the above, where

38It’s not so important, because one does not blindly delete everything with the same hash. One first
checks to verify that the right thing is being deleted. The hash only served to quickly find a small list of
candidates. This is as always.

39See https://en.wikipedia.org/wiki/Ordered_Key-Value_Store
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the “abstract indicator” is the s-exp, instead of the Merkle tree. Given the earlier
discussion concerning the size of s-expressions vs. the size of pointers, this is
certainly a viable storage format for the in-RAM metagraph database. That it
is not used by the current in-RAM AtomSpace is largely a historical accident.
However, one of several of the current file-storage backends to the AtomSpace
is RocksDB. That backend does use s-expressions as the “primary key”, and
RocksDB itself is a kind of OKVS.

Metagraph insertion can be compared to SQL table insertion along the same lines.
As should be clear, there is not really all that much difference here, at least con-

ceptually. The biggest and by far the most apparent difference is that SQL explicitly
and overtly exposes UUIDs in the form of primary keys, thus dragging all that baggage
along with it. By contrast, a metagraph store can keep all of this hidden, and has multi-
ple implementation options for the analogous concept of a primary key: either Merkle
trees, or s-expressions, or possibly something else. From the implementers point of
view, this is nice: there are various possible implementations (and they are all hidden
from the user! No backwards-compat concerns!)

This is also nice from the user’s point of view: why mess with primary keys, if one
doesn’t have to? One less thing to think about, and not unrelated to the “automatic”
nature of table normalization with metagraphs. Metagraphs provide automatic key
maintenance. Nice!

7.1.1 Metagraph mutability vs. Graph databases

Lets compare the metagraph store to a graph database. In a graph store, how, exactly
is one supposed to say that “this vertex is the same as that vertex”? Finding a suitable
solution is non-trivial; it requires either references or some other technique to indicate
sameness. How is this to be managed in a graph store? If one is not careful, one finds
oneself performing queries at the same time that one is inserting data.

There is a large variety of graph stores that are generally available. Each has unique
API’s and differing implementations. It is beyond the scope of this text to review them
all. Thus, the answer to be supplied here is utterly opaque. How can one retro-fit this
primary property of metagraphs, of global metatree uniqueness, onto a graph store?
What’s the answer? This section is short because the problem is a bit mind-boggling.

To conclude: we seem to have discovered, quite accidentally, with no explicit in-
tent, that hypergraphs offer an elegant property that graph databases lack.
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8 Query Languages and Graph Traversal
The majority of popular query languages (QL) are modeled on SQL, taking SQL as not
just an inspiration, but rather directly borrowing (stealing) most of its keywords and
syntax. This is good, in that it makes it easy for users who are already familiar with
SQL to learn the new system. This is good, in that it acts as a guidepost to the architect
of the NewQL: if things get confusing, just take a look at how SQL did it, and make
NewQL do it more-or-less the same way.

This is bad, in that, when the QL is to be applied to a new domain (such as graphs,
hypergraphs or metagraphs), the mind-set that was suitable for table queries might not
be appropriate for graphs. But this is not obvious: just half an hour with GraphQL
documentation and examples will easily leave you with the impression that you can do
anything you want with GraphQL. Got a graph? GraphQL can traverse it! That there
might be some other way, maybe even a better way, never really enters your mind.40

There is no doubt that the mathematical theory of relational algebras is the “cor-
rect”, or at least the “best” theory for tables and the records stored in them. It’s over-
whelmingly dominant, and there does not appear to be any reason to question it. Like-
wise, the manifestation of relational algebras as SQL has the same effect: it works
really really well for records and tables, and there is no compelling reason to replace it
with something else. (A little voice asks: “if that’s the case, then why graphs?”) The
success of this theory has the effect of shutting down any thought process that might
lead elsewhere.

The aim of this section is to make this thought process overt, and show how there
might be QL’s that are not SQL siblings. It begins by (once again) reviewing the actual
structure of metagraphs, and then examines how they compare to conventional table
queries.

8.1 Weak Pointers
The example metatree diagram, as originally drawn (on the left) is misleading as to
how it is actually represented in memory. If one examines the metagraph link table (
on page 21) and includes arrows for both the incoming set and the outgoing list, one
gets the diagram on the right:

40This is a reply to the Sapir–Whorf Hypothesis in the strong affirmative. The Sapir–Whorf hypothesis is
briefly worded as “language limits thought.” Originally, the language was natural language, say English or
Chinese. The hypothesis seems a bit absurd: if I speak English or Chinese, why wouldn’t I be able to think
of anything (if I’m smart enough)? What’s limiting about language? It’s hard to imagine what one wouldn’t
be able think of. In the present case, the language is SQL, and if you are a programmer/DBA who thinks in
terms of SQL, it is very hard to imagine what kind of queries one could perform that don’t look like SQL.
This is the topic of this section: exposing the limitations of SQL-thinking.
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The dotted arrows are back-pointers from lower levels to higher levels: they are the
incoming set pointers, in contrast to the solid arrows, which show the outgoing links.
They are almost in one-to-one correspondence, but not quite: notice there is only one
dotted arrow from e2 to e3, although there are two distinct downward links.

The back-pointers are needed to make the graph fully traversable; the need for this
is the topic of this section. The back-pointers do eat up RAM; but this RAM usage has
already been counted, in a previous section. Here, it is only the diagram that has been
corrected to more appropriately show the actual situation. In actual implementations,
the dotted arrows are weak pointers (as opposed to regular pointers). Weak pointers
are required for memory management, whether through garage collection (GC), or
through reference counting (RC) with smart pointers. Both kinds of systems (GC and
RC) can only work with DAG’s, and do not tolerate loops, as these cannot be freed. Yet,
programmers sometimes need to create loops of pointers; thus, programming languages
provide weak pointers for this use. That is what is shown here.

It is natural to use weak pointers for the incoming set, and regular pointers for the
outgoing list. This is because, as observed earlier, metatrees must be immutable after
they have been created. They cannot be edited; they can only be deleted. There is,
however, one minor point of confusion, illustrated in the diagram below.

This shows that a new link e5 has been added to the previous diagram. This is not
an edit! The earlier tree, rooted at e4, is completely unchanged. None of the regular
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pointers have changed. Two of the atoms e2 and n3 have enlarged incoming sets: they
have gained a weak pointer each. That the original metatree has not changed can be
most easily observed by the fact that it’s corresponding s-expression is the same as
before:

( e4 ( e3 ( e1 n1 n2 ) ( e2 n2 n3 ) n1 ( e2 n2 n3 ) ) n3 )

The diagram above shows two metatrees. The second one is
( e5 ( e2 n2 n3 ) n3 )

The new root e5 points to two existing metatrees: e2 and n3; neither has been modi-
fied. The point here is that immutability does not conflict with creation and deletion.
Creation and deletion do alter the weak pointers/incoming sets, but not the metagraph
itself.

8.2 Queries and Tables
What do weak incoming sets have to do with queries? That they allow complete traver-
sal of the metagraph is intuitively obvious: there are plenty-enough arrows (both reg-
ular and weak pointers) to be able to take walks from any Atom to any other. But are
these really needed? The aim here is to show that the answer is ’yes’, they really are.

As an initial example, consider the metatree without the incoming-set pointers.
Consider a tree-walk starting at e4. Using conventional recursion techniques, it is easy
to recurse (left to right) down to e3 then e2 and then n1. Implemented as a stack ma-
chine, the next step is to pop, and then visit n2. The next stack pop brings us back
to e3 and traversal proceeds as normal. Nowhere in this stack machine recursion is it
possible to visit e5. If one has started at e4, one cannot get to e5. Worse: perhaps one’s
starting point was n1. From there, one cannot get to anywhere, at least, not when there
aren’t any incoming-set pointers (the dotted lines).

But is this relevant in any real-world application? Consider the following interpre-
tation of the above diagram, where the Nodes are individuals, taking school classes and
working part-time jobs:

Atom Interpretation
n1 Joe
n2 Mary
n3 Rachel
e1 Intro Computer Science
e2 Intro Beauty and Hair Care
e3 Dean of Students
e4 Wossamatta University
e5 Ayurvedic School of Cosmetology II

e3 −n1 Joe assists in the Dean’s Office
e5 −n3 Rachel is a TA in cosmetology

A natural question to pose in this interpretation is “what schools does Rachel at-
tend?”. Starting at n3, one can trace upwards to find that Rachel attends both Wos-
samatta U. and ASCII.
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How might this have worked in conventional SQL? Well, for starters, we need
something like this:

CREATE TABLE Schools (
name TEXT,
uuid INT PRIMARY KEY ) ;

INSERT INTO Schools . . . ;

CREATE TABLE Courses (
name TEXT,
school_uuid INT FOREIGN KEY,
uuid INT PRIMARY KEY ) ;

CREATE TABLE Students (
name TEXT,
course_id INT FOREIGN KEY,
s tuden t_ id INT PRIMARY KEY ) ;

One continues in this fashion, creating a few more tables. Denoting that Joe assists in
the Dean’s Office and that Rachel assists in the School of Cosmetology poses a bit of a
challenge. Perhaps this might do?

CREATE TABLE Employment (
name TEXT,
employer TEXT,
taxpayer_ id INT PRIMARY KEY ) ;

The need to denote employment adds a challenge to representing everything prop-
erly with tables, but is not relevant to the query about the schools that Rachel attends.
Mostly, we just observe that, even for this rather simple graph, there already is a profu-
sion of tables with some rather complex relationships between one-another. Textbooks
insist that normalization is the correct thing to do; students often find that normalization
is just plain hard.

How does the query work?

SELECT Schools . name FROM Schools WHERE
Students . name = ’ Rachel ’ AND
Students . course_id = Courses . uuid AND
Courses . school_uuid = Schools . uuid ;

The above has the form of an explicit path walk. It starts at n3 and explicitly names a
path that takes it to e2 and then ... Well, obviously, we’ve left out a few details, in that e2
is jointly managed both by ASCII and by the Dean of WU. Representing this properly
requires a few more tables, and an additional clause in the SELECT statement.41

This query works precisely because the DBA who is creating the query has a very
concrete grasp of all of the tables involved, and is able to thread an explicit path be-
tween the tables. The reason that the SQL database engine can execute the query is

41We’ve left out more than a few details. There is the concept of ’JOIN’, and its variants of ’INNER
JOIN’, ’OUTER JOIN’ and so on, all of which exist to allow the DBA to more carefully control and craft
the nature of the graph walk needed, and how the data flows through the query, so that the query will run
in an efficient, performant manner. The DBA really needs to actually think of what the query is doing (and
to know the concepts, and to consult the documentation). I’d like to suggest that programming in SQL is
like programming in assembly code, but for data. Perhaps it’s time for a higher-level query language that
abstracts away these details.
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because the DBA explicitly inserted FOREIGN KEY constraints into appropriate loca-
tions. These foreign keys have the side effect of defining an index that manifests the
dashed arrows in the metagraph diagram. The foreign keys are the dashed arrows. Not
all of them; just some of them, only the ones that the DBA saw fit to add during the
table design. Just like the dashed weak pointers allowed the metatree to be traversed
upwards, so also the foreign keys allow the tables to be traversed “upwards”.42

8.2.1 Query planning

Query planning concerns the topic of how the database engine will actually perform the
query. The above example was written in a fashion that highlights an obviously efficient
and easy way to run the query. Start at the literal ’Rachel’, use the join ’Students.name
= ’Rachel’’ and trace the dashed arrows upwards, to immediately arrive at the desired
answer.

Of course, there is no guarantee that the SQL engine will actually do this. It might
decide to start with ’TABLE Schools’, examine each school in turn, and then trace down-
wards from the top, until it eventually reaches Rachel, and is able to satisfy this final
constraint. Table joins are a constraint satisfaction problem. Solving constraint satis-
faction problems (CSP) is non-trivial;43 there is a vast literature devoted to this, both
for the case of general CSP, and to the specific case of query planning.

Why would an SQL engine run this query in an unexpected or inefficient way?
Well, the query planner may have decided that it is too expensive to create the dashed-
arrow indexes. Without the dashed arrows, one obviously has to start at the top. Why
would it decide that the dashed arrows are too expensive? Well, it might have looked at
all the tables, noted that they are all very small, and that a direct downward-recursive
query could be performed rapidly. Why splurge on indexes if the tables are small and
directly searchable?

There are also more mundane reasons to run the query top-down: the particular
SQL engine may not even have much of a query planner. It might lack the sophistica-
tion to do anything fancy. The reality is that it is difficult to create a good SQL query
planner. Not every system will take the effort.

8.2.2 Example: OGRE QL

A worthwhile example to contemplate is the query language for OGRE[2].44 The in-
fluence of SQL in this query language is clear. Interestingly, OGRE was designed to
be a database for s-expressions, and, as we’ve noted, s-expressions seem to make for
an almost ideal representation for metatrees. So what’s the catch?

Well, the OGRE s-expressions are just that: strings. They are not metatrees; they
are not interpreted as metatrees. They are interpreted only as ordinary, conventional

42This is the point of the Meijer and Bierman result.[1] In a noSQL database, the arrows point in the
opposite direction. In either case, useful database queries require arrow-chasing. Turns out that both SQL
and noSQL databases are, under the covers, graph databases with awkward API’s.

43See https://en.wikipedia.org/wiki/Constraint_satisfaction_problem
44Documentation for it is currently located at this URL: http://binaryanalysisplatform.

github.io/bap/api/odoc/ogre/Ogre/Query/index.html
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abstract syntax trees. Because of this, there is no particularly compelling reason to au-
tomatically manage the incoming sets for these trees. Or rather, there is no particularly
compelling reason, until one considers the implementation of the ’JOIN’ keyword. In
OGRE, there are no overt primary keys, and no foreign keys, so these need to be gener-
ated implicitly, as needed, to perform a query that joins together multiple s-expressions.

Does OGRE actually auto-create these primary-key/foreign-key relations, under
the covers? Without looking at the implementation, it is hard to guess, but there are a
few hints. OGRE works as follows. Each s-expression has the form

( < a t t r i b u t e −name> <v1> <v2> . . . <vM>)

That is, the very first word appearing after the opening parenthesis has a special mean-
ing. This is entirely conventional: in LISP/Scheme, the first word appearing after an
opening parenthesis also has a very special significance. It is an operator. For our meta-
trees written as s-expressions, that first word is necessarily a Link. And so in OGRE,
the first word is called the “name of a proposition”; the subsequent words are the object
(or subject) of the proposition.45

As noted in the introduction to this text, an s-expression such as
( s tudent (name Joe ) ( gpa 3 . 5 ) )

can be shortened to
( s tudent Joe 3 .5 )

provided that one has declared a “predicate”
( dec lare s tudent (name s t r ) ( gpa f l o a t ) )

This last statement resembles a conventional table-database table declaration. The re-
semblance is more than superficial. The explicit BNF syntax for the declaration is

d e c l a r a t i o n : : = ( dec lare < a t t r i b u t e −name> < f i e l d > < f i e l d > . . . )
f i e l d : : = ( < f i e l d −name> < f i e l d −type >)
f i e l d −type : : = i n t | s t r | bool | f l o a t

The field type is explicitly a concrete type.46

The need for explicit declarations, and the explicit identification of concrete types
for fields, suggests that, under the covers, OGRE is building up all the machinery
needed to perform table joins. Presumably this means the creation of the dashed-arrow
incoming sets that are needed for upwards traversals. Or perhaps not: maybe the OGRE
query planner always initiates queries top-down, starting at the uppermost declaration,
and running a stack machine to perform recursive joins downwards. If one has well-
defined tables, a top-down query would seem like a viable approach.

Note, by the way, that the declaration statement is of fixed length, and is NOT
variadic! The declaration statement really is defining fixed-length records which can

45The word “proposition” is no accident. It is meant to make you think of propositional logic. This point
will be returned to when we look at ProLog. It is notable that there is confusion between subject and object;
that these are taken to be synonymous. In the general sheaf theory, subjects and objects are not synonymous;
they correspond to different connector types. But this is a topic outside of the scope of the present text.

46This is a good time to start talking about type theory. The correct handling of metatrees requires rec-
ognizing that the first word following the open parenthesis, the so-called Link, is a de facto type-theoretical
type. Perhaps there is some way for it to not be a type, but, as Sapir–Whorf suggests, it proves to be difficult
to imagine how it could be anything other than a type.
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be placed into a completely conventional row-table. This is perhaps why the OGRE
query language looks a lot like SQL: it has not departed from the table paradigm. It
has merely slapped on a prettier API, prettier in the sense that the primary key and
foreign key constraints have disappeared into the woodwork.

As a meta-comment about table declarations and queries: this all works fine, as long
as one has a small number of declarations. A dozen, a few dozen, less than a hundred.
Pondering the situation of a million different table declarations is .. imponderable, if
one comes from an SQL background. Because: oh good lord, how could one ever write
meaningful queries if there are a million tables? Can’t even imagine. Why, one would
need to write meta-queries to query tables, and perhaps query meta-tables of tables.
If only there was a meta-query language to query meta-tables in recursively-organized
meta-trees... oh wait, what?

We’ll get back to you on that one.
In the meanwhile, it is important to observe that OGRE was designed to be a plugin

for OCaML. A significant part of the query apparatus is defined in terms of OCaML
and not in terms of s-expressions. Portions of the query are explicitly typed; many
of the type declarations are functional-programming function arrows (in type theory,
these go by the name of “function type”, “arrow type” or “exponential”, the later name
harking back to size of the codomain of set-theoretic functions).47 The query language
is usable only if one is writing OCaML.

Perhaps the most innovative aspect of the OGRE query language is that it is wrapped
in a Kleisi triple (a Monad). Somewhat oddly, though, that monad seems to reinvent
some subset of LISP, or at least of the SRFI-1 list iterators. This is perhaps not en-
tirely unexpected: s-expressions do look like lists, and it is natural to want to do list
operations on them.

47See https://en.wikipedia.org/wiki/Function_type
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9 A Meta-Query Language
How else could the query about the schools that Rachel attends could be formulated?
Returning to the example diagram

and once again noting that the presence of the dotted arrows allows rapid graph traver-
sal starting from any Atom, we can offer the following as a possibility:

( Meet ( Var iab le "? what−school ? " )
( Present

( L ink ( Var iab le "? what−school ? " ) ( Var iab le "? course ? " ) )
( L ink ( Var iab le "? course ? " ) (Node " Rachel " ) ) ) )

The reading of this query is as follows:

• ’Meet’ is a special keyword defining the query.48

• ’Variable’ is a special keyword, that, when it follows a ’Meet’, it indicates what
the query is to return. It has other (related) meanings in other contexts.

• ’Present’ is a special keyword, asking that all of the clauses must explicitly appear
in the database. They must be matched, as patterns in a pattern matcher. It is an
unordered Link; the order of the clauses in this Link carries no significance.

• The ’Node’ and ’Link’ keywords are special keywords, explicitly denoting the
Nodes and Links about which we’ve been talking all along.

The intent is that the ’(Variable ?course?)’ is grounded by e2, a course Rachel (n3) is
attending. The ’(Variable ?what-school?)’ is grounded by e5, the School of Cosmetology.

This should be contrasted with the earlier SQL query:

SELECT Schools . name FROM Schools WHERE
Students . name = ’ Rachel ’ AND
Students . course_id = Courses . uuid AND
Schools . uuid = Courses . school_uuid ;

48The name ’Meet’ comes from the mathematical concept of meets and joins on a lattice. See https:
//en.wikipedia.org/wiki/Join_and_meet. The ’Present’ link is a listing of several points in
a lattice, all of which must be met by any solution to the query.
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The most notable difference is that the meta-query does not need to explicitly name the
’Schools’ table. Indeed, the metagraph does not have a ’Schools’ table, and so it is not
nameable (this could be “fixed” by adding more nodes and links to the metagraph, but
that is besides the point.)

Another fundamental difference is that SQL embodies an explicit “equational the-
ory”, whereas the meta-query does not.49 The SQL statement has implicit variables in
it: the expression ’Students.course_id’ is meant to be understood as a variable, ranging
over all possible values of ’course_id’ in the ’Students’ table. The ’Courses.uuid’ is an-
other implicit variable. The equals sign is needed, because of the way that the variables
appeared implicitly. There is no other way of saying “hey, these two variables are really
the same thing”, and thus the concept of table joins is born.50 The meta-query made
use of the property of meta-graphs that any given Atom is always the same Atom. That
is, the ’(Variable “?course?”)’ is the same Atom in both subtrees. There is no need to
use an equals sign to equate these two positions; they are already “the same thing” as
metagraphs; they can’t not be “the same thing”.51 There is no explicit need for equality.

A third fundamental difference is that the metaquery did not require any prior table
definition. The situation is thus quite different than the aforementioned OGRE QL.
Thanks to the implicit presence of the dashed arrows, there is no need to explicitly
define indexes (i.e. there is no ’CREATE INDEX ON Students(name);’ which would be
needed if we wanted to have fast-running SQL queries on student names. The primary
keys, of course, did not need explicit index declarations.)

A fourth fundamental difference is that the metaquery is itself a metatree. It does
not live outside of the system of metagraphs. It does have a peculiar syntax and a
collection of syntax rules (i.e. it must begin with ’Meet’, it must have some variable
declarations and use the ’Present’ link, and so on) but that syntax is a sub-language
within the language of free s-expressions. The fact that the metaquery is itself a meta-

49See https://en.wikipedia.org/wiki/Theory_of_pure_equality and https://
en.wikipedia.org/wiki/Equational_logic. In mathematical logic and model theory, the equa-
tional theory is the first theory that is more complicated than the “free theory” (see https://en.
wikipedia.org/wiki/Free_theory.) In brief: with the free theory, you can freely “write down
anything”, as long as the parenthesis balance. Both s-expressions and the Datalog subset of Prolog can be
taken to be examples of free theories. The theory of pure equality adds the equals sign, and says “you can
write down anything”, as long as the parenthesis balance and you also take transitive closures of the things
that are equated. Problems of consistency first show up here, as it is possible to write down nonsense and
paradoxes using equals signs. Relational algebra (e.g. SQL) is the theory where you can “write down any-
thing”, but you can also use relations between things. Each relation corresponds to an SQL table. That
relation is “true” if the corresponding row exists in the SQL table, else it is “false”; thus relations are some-
times called predicates. A pure relational algebra, without equality, is not quite interesting enough to be
practical. As all of these examples show, you need to fold in the theory of equality in order to perform table
joins. The equals sign just says “this variable appearing in this predicate is equal to this other variable or
constant appearing in some other predicate”.

50The complexity of table joins is in part a side-effect of the complexity of the theory of equality. You
might think that equality seems pretty darned easy; it’s just equals signs, right? Contemplating the complex-
ity of SQL table joins, and the complexity of SQL query planners in planning table joins should quickly dis-
abuse you of the idea that “equality is simple”. It’s hard. If you are still not convinced, review the Wikipedia
article on equational logic again: https://en.wikipedia.org/wiki/Equational_logic. It
has a number of axioms to make it work, and it is no accident that it was developed by computer scientists
who were also known for their contributions to relational algebras and query languages.

51Variables, are, however, always named, given a name. It is an open question as to how anonymous
(unnamed) variables might be written and used.
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tree opens the possibility of querying for queries. This may sound utterly absurd, but
is in fact very commonplace in chat-bots and rule engines! This is expanded on, in the
next section.

It is perhaps instructive to draw the metatree diagram for this query:

The reading for this metatree, in terms of its Atoms, is as follows:

Atom S-expression
v1 ( Var iab le "? what−school ? " )
v2 ( Var iab le "? course ? " )
n3 (Node " Rachel " )

e1
( L ink

( Var iab le "? what−school ? " )
( Var iab le "? course ? " ) )

e2
( L ink

( Var iab le "? course ? " )
(Node " Rachel " ) )

p1
( Present

( L ink ( Var iab le "? what−school ? " ) ( Var iab le "? course ? " ) )
( L ink ( Var iab le "? course ? " ) (Node " Rachel " ) ) ) )

g1

( Meet
( Var iab le "? what−school ? " )
( Present

( L ink ( Var iab le "? what−school ? " ) ( Var iab le "? course ? " ) )
( L ink ( Var iab le "? course ? " ) (Node " Rachel " ) ) ) )

Drawing the query as a graph should make it clear that performing this query re-
quires solving a subgraph isomorphism problem. That is, satisfying this query requires
searching for a subgraph of the input-data graph that has exactly the same shape as the
query. After matching up the shapes, one performs a “fill in the blanks” to find the
variable groundings.

More formally: The query implicitly demands that the variables should be grounded.
The variables are to be grounded by Atoms, which may be either Nodes or Links. In
the case of Links, these are (by definition) metatrees themselves, and so the grounding
matches a variable to a subgraph. The collection of subgraphs must be those specified
in the ’Present’ link: i.e. they must be isomorphic to it. Thus, the subgraph isomor-
phism problem.
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The careful reader may have noticed that the above query only returns that Rachel
is a student of ASCII. The full query, which would also reveal her to be a student of
WU, is given below. The comparable SQL statement is considerably more complex
and not given.

( Meet ( Var iab le "? what−school ? " )
( Present

( L ink ( Var iab le "? course ? " ) (Node " Rachel " ) ) )
( Choice

( Present
( L ink ( Var iab le "? what−school ? " ) ( Var iab le "? course ? " ) ) )

( Present
( L ink ( Var iab le "? what−school ? " ) ( Var iab le "? deprtment ? " ) )
( L ink ( Var iab le "? department ? " ) ( Var iab le "? course ? " ) ) ) ) )

The above introduces the ’Choice’ Link. For the most part, it can be read as a logical-
OR of the two predicates that it wraps. More precisely, it denotes a menu-choice: pick
one or pick the other (but not both). It resembles an exclusive-OR, but is not the same:
exclusive-OR returns a truth value, whereas a menu-choice returns the chosen item.
Choice commonly appears as a fragment of intuitionist logic and of linear logic.

9.1 Metatree Query vs. String Pattern Matching
Since metatrees can be written as s-expression strings, and since metaqueries can be
likewise, the question arises: can metaquery evaluation be reduced to (regex) string
matching? The initial example certainly feels like this might be possible: the variables
are just wild-cards, and everything else is just constant strings that can be matched
verbatim. Unfortunately, this is not the case.

This is doubly unfortunate, since pattern matching is well-understood and widely
developed. Besides regex and pcre,52 one has the ‘syntax-case‘ subset53 of “hygienic
macros” in the scheme programming language. Syntax case provides rudimentary pat-
tern matching and term rewriting. In that direction, most (all?) functional programming
languages include pattern matchers as a basic utility.54 The well-developed ones pro-
vide pattern languages that are quite expressive, and the implementations tend to be
compact and direct.

Metatree querying is not just (string) pattern matching. Key differences are:

• In the s-expression for a metatree, when a sub-expression is repeated, it is un-
derstood to be the “same subexpression”, i.e. the same Atom. There is no such
guarantee in a string match: the first occurrence of a subexpression could be
matched one way, and a second occurrence a different way, possibly with a con-
flicting match. Thus, if string pattern matching were to be used, it would need
to be enhanced with some sort of conflict-free subterm matching. But how to

52Perl-compatible regular expressions. See http://www.pcre.org/
53See https://www.gnu.org/software/guile/manual/html_node/Syntax-Case.

html
54Examples include Racket: https://docs.racket-lang.org/reference/match.html

OCaml: https://ocaml.org/manual/patterns.html and Scala: https://docs.
scala-lang.org/tour/pattern-matching.html
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implement this? That line of thinking seems to lead down the path of reinventing
metatrees, but in an application-specific setting.

• Practical metatree matching requires the ability to match into unordered collec-
tions (sets). This means that each and every permutation of an unordered set must
be attempted during the match. String pattern matchers conventionally cannot
do this. When they can, there is often no ability to handle nested unordered sets,
subterms of which might need to be identical in the aforementioned conflict-free
fashion. That is, if a variable occurs in multiple places in multiply-nested un-
ordered sets, and it is grounded one way in a specific permutation of one set, it
must be grounded exactly the same way in all permutations of all other sets in
which it occurs. This is the ’conflict resolution’ aspect. How can this be accom-
plished? Well, one can use either metatrees, or one can use a ’theory of equality’.
But, as noted above, the theory of equality provides it’s own challenges to im-
plementation: it introduces brand new conflict resolution issues that are difficult
to resolve.

• Practical metatree matching needs to provide menu-choice alternatives for sub-
terms: one could match this or this or this. The choice can be buried arbitrarily
deep in the pattern. As a string pattern matcher proceeds left-to-right through
the string, and encounters a choice, it must explore each and every choice, indi-
vidually. That means that it must backtrack if some given choice fails to match.
Backtracking means that the pattern matcher must be implemented as a stack
machine (because partial matches are held in a score-board, and that score-board
must now be placed on a stack). So, two issues here. First: regexes correspond
to finite state machines, whereas stack machines correspond to context-free lan-
guages. So already, with choice, we’ve left the (simple, fast, direct) domain of
regexes and finite state machines. Second: if the implementation of the pat-
tern matcher is forcing you to think recursively, then why are you still thinking
“strings”? Why not think in terms of trees, which is what recursion (and con-
text free languages) really are? Once one has entered that domain, it is easier to
conceptualize in terms of graphs, than strings.

• Practical metatree matching requires the ability to quote and unquote signifi-
cant keywords in the pattern. For example, one might want to search for all
expressions that contain the term ’Variable’ in it. Obviously, this would have to
be quoted (say, as ’(Quote (Variable ?x?))’) as otherwise, the variable would be
interpreted as a variable in the pattern, instead of a constant term to be matched.

• Practical metatree matching requires the ability to match lambda expressions.
This requires the ability to find bound variables, and not only treat them as con-
stants, but also to alpha-rewrite them. Consider, for example, the lambda ex-
pression λx.(x+2) written as a metatree: ’(Lambda (Variable $x) (Plus (Variable $x)
(Number 2)))’. This expression is obviously equivalent to λy.(y+2) or ’(Lambda
(Variable $y) (Plus (Variable $y) (Number 2)))’. The formal name for this kind of
equivalence is “alpha equivalence”. Any pattern that is searching for lamb-
das that involve ’Plus’ and the number 2 must be able to determine the alpha-
equivalence of the match to the pattern. This is no longer a simple string match:
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the pattern matcher needs to be aware that ’Lambda’ is a special keyword that
binds its variable declarations. It needs to know that bound variables can be
alpha-rewritten.

After reading the above, the reader might feel as if there was a bit of a bait-n-switch
performed with the pattern matching requirements. Some deeper thinking would have
avoided this impression. The overall topic of this text is that metagraphs are suit-
able for generic knowledge representation. This means representing not only ’simple’
graphs and metagraphs, but also quotidian systems like ontologies, phylogenies, first-
order logic, Bayesian networks, lambda calculus, probabilistic programs, functional
programs, declarative programs, genes, proteins, chemistry, natural language, visual
objects, sounds, 3D spaces, ... As such, a knowledge representation system has to be
practical and utilitarian, useful as a tool for the day-to-day knowledge worker. Thus,
funny business like quotes and lambdas and alpha-rewrites and unordered sets must
necessarily enter into the picture, and be supportable in the query system. Users ask
for these things, users want them. You can’t say no to users and expect them to come
back.

Note, by the way, that the goals of a knowledge representation system resemble the
goals of set theory or topos theory for mathematics: generic frameworks on which it is
hoped that all of mathematics can be founded. Knowledge representation is likewise
foundational. It is no accident that knowledge representation must borrow or steal
ideas from topos theory, ideas such as sheaf theory. Sheaves are actually useful in
mathematics. At this time, it is not yet widely understood that sheaves are also useful
in knowledge representation. But we wander off-track, here; this is a different topic,
covered in other texts in this series.

Assorted OpenCog documentation and web pages refer to the query engine as “the
pattern matcher”. This is misleading, as much of the tech industry understands “pat-
tern matchers” to be simple finite state machines with pattern languages. The actual
OpenCog system is as described above, a stack machine capable of recursive multi-
component graph walks.

9.2 Query Analysis
Graphs may include equality predicates. In rare cases, these can be statically analyzed,
without performing a query.

A full-fledged query language can include evaluatable predicates to accept or reject
a particular grounding. During the analysis phase, these are set aside into a distinct
bucket. They cannot be grounded (by definition), they can only be evaluated after a
grounding is found.

Some evaluatable predicates, such as “less than”, may cause a graph to fall apart
into disjoint, disconnected components that are bridged only by evaluatable terms. Dur-
ing the analysis phase, the connected components must be identified and set aside.
During evaluation of the query, each connected component is grounded separately, and
then brought together, to evaluate “less than” on the resulting groundings. Evaluatable
terms, such as “less than”, act as a filter on the Cartesian product of the components.
Terms such as logical-or act on the disjoint union of the components. That is, both
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pi-type and sigma-type arrangements of disjoint components are possible.
A full-fledged query language can include an ’Absent’ predicate, indicating one or

more clauses that must be absent in the dataset, in order for the query to be satisfied.
Such clauses are extracted and set aside during the analysis phase. They resemble
evaluatable clauses, but have their own distinct peculiarities.

A full-fledged query language can include an ’Always’ predicate, required to be
present in not just one grounding, but in every grounding. They resemble evaluatable
clauses, but they cannot be evaluated until after all possible groundings have been
obtained (They can fail early, though.)

9.3 Query Planning
The most basic query planning involves choosing a starting point for a graph walk.
Thanks to the incoming set, the query can be started anywhere. However, it is advan-
tageous to start the graph walk at the thinnest, most distant part of the graph, so that it
does not need to be regularly revisited.

Sometimes, finding a starting point this way is impossible, because the query con-
sists entirely of variables. In other cases, a query may consist entirely of evaluatable
terms, which, by definition, are not groundable, but only evaluatable. These cases must
be dealt with.

Queries may consist of multiple disconnected components; these must be individu-
ally grounded, and then reassembled with pi-type or sigma-type bridges between them.

It is advantageous to borrow some ideas from SAT solving, and prune simple trees
from the query, before performing an exhaustive search of a multiply-connected tight
nucleus. The pruned trees can be re-attached later. Equivalently, they might only need
to be pattern-matched once. In this case, pruning is equivalent to maintaining a cache
of pattern matches achieved earlier during traversal. (That is, a recursive graph walk
will typically revisit certain parts of the graph. But if those parts have already been
grounded, they do not need to be revisited again; it is sufficient to have a cache of the
groundings.)

The OpenCog query engine makes use of these query optimizations.

9.4 Attributes (Tags)
This text opened with an extended discussion of attributes, and about how attributes
are attached to the nodes and vertexes of a graph. This is still the case, still a desirable
thing to do, when working with metagraphs. “But why?” you may wonder, “why can’t
everything be encoded as as metagraph? Why are attributes needed?”

Well, of course, everything can be encoded as a metagraph. However, there’s a cost;
several costs, actually. One cost is that metatrees are immutable. If one has a list of 100
floating point numbers, and wishes to change the 42nd one, it seems like overkill to be
blocked from doing so by immutability. One might like to have something mutable,
for this kind of a low-level vector. Another cost is the weak pointer (the dashed arrow).
There is no particular need to maintain an incoming set for each floating point in a
list. It is unlikely that two different Links will share the same floating point number
(to all of it’s glorious 18 decimal places!? Really?) It is unlikely that there will ever
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be any need for a query to traverse backwards (through the incoming set) of that float.
Traversing forward into the vector of floats is plenty enough, if the only query decision
to be performed is greater-then, less-than on some arithmetic ops on those numbers.
Saving some RAM by not storing the weak pointers is a laudable thing do to.

If the attributes are stored as key-value pairs (KVP), then the attributes on any given
Atom can be understood conceptually as a key-value database per Atom. This might
feel like overkill, but it isn’t really any different from graph databases in general. If a
vertex or an edge of a graph has some attributes attached to it, then those attributes can
be thought of as residing in a database specific to that edge or vertex.

In the present case, there is one fun little twist: if the KVP’s are hierarchical, i.e. a
tree, then they can be thought of as a special case of a metatree (as, indeed, trees are
special cases of metatrees), but it is a metatree that is shorn of it’s weak back-pointers,
and thus can be mutable. One saves RAM and regains the mutability that was lost. The
price to be paid is that such attributes are no longer searchable. (More precisely, they
are no longer searchable except by brute force exhaustive search. The weak pointers
acted as local indexes; without the ability to do an index lookup, brute force exhaustive
search is all that one has left.)

The OpenCog AtomSpace supports attributes in the form of KVP trees. It has made
one unfortunate naming choice for these attribute trees: they got called “Values” with
a capital V. This naming choice forces all sorts of contortions when one wants to talk
about ordinary values with a lower-case v. The naming choice was arrived at under the
influence of model theory, where a clear distinction is made between sentences of a lan-
guage and their valuation. In model theory, and in logic, sentences are assigned “truth
values”. Historically, these are crisp true/false values. But in Bayesian belief networks
and in Markov logic networks, these valuations are given floating-point probabilities
as their truth values. On OpenCog, these were historically called TruthValues, written
in CamelCase. When generalized to arbitrary KVP valuations, they become Values. A
better name might have been Attributes or Tags, as they are treated as ... attributes, or
tags.

9.5 Chatbots, Rule Engines and Inverted Queries
Here’s something SQL cannot do: it cannot search for SQL. Absurd, right? One of the
early chatbot technologies is called SRAI (Stimulus-Response AI), and the scripting
language for SRAI is known as AIML (AI Markup Language). An example snippet of
AIML is given below.

<aiml >
<category >

<pat te rn > I love * </ pa t te rn >
<template > I l i k e < s t a r / > a l o t . < / template >

</ category >
<category >

<pat te rn > I * you </ pa t te rn >
<template >Well , I < s t a r / > you , too ! < / template >

</ category >
</ aiml >
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The goal of this is to specify some conversational patterns to be matched, and, if
matched, to produce the indicated output. Thus, if a human says “I love baseball”, the
chatbot responds “I like baseball a lot.” If the human says “I hate you”, the response
“Well, I hate you, too!” is elicited. In the case of “I love you”, there are two possible
responses, and a coin is flipped to pick one.

What is being done here is a kind of inverted query. One is presented with the
’answer’, “I love you”, and the goal is to find all ’queries’ which can be satisfied
by that answer. In this example, the two queries are ’<pattern>I love *</pattern>’ and
’<pattern>I * you</pattern>’. Abandoning the XML markup in favor of s-expressions, the
two patterns are

( I love ( Var iab le "? s t a r ? " ) )
( I ( Var iab le "? s t a r ? " ) you )

An AIML chatbot consists of tens of thousands of such patterns, and the matching re-
sponses. In order to have rapid query responses, chatbot implementations organize the
patterns into a trie55 and typically implement some variation of the Rete algorithm.56

All this can be expressed in the Atomese meta-query language. It is necessarily
a bit more verbose, but perhaps still readable without assistance. The AtomSpace is
populated with SRAI rules, having the form

( Query
( Present (Word " I " ) (Word " love " ) ( Var iab le "? s t a r ? " ) ) )
( ( Word " I " ) (Word " l i k e " ) ( Var iab le "? s t a r ? " )

(Word " a " ) (Word " l o t " ) ) )

( Query
( Present (Word " I " ) ( Var iab le "? s t a r ? " ) (Word " you " ) )
( ( Word " Well , " ) (Word " I " ) ( Var iab le "? s t a r ? " )

(Word " you " ) (Word " too ! " ) ) )

The reading of this content is as follows:

• ’Query’ is a special keyword defining the rewrite rule. It is much like ’Meet’,
introduced previously, except that, this time, instead of delivering a grounding,
it delivers a rewrite making use of that grounding. The first Atom following the
query is the pattern to be matched. The second Atom of the query is the rewrite
to apply, after a match has been found.

• The ’Variable’ and ’Present’ keywords are just as before.

• The ’Word’ is a handy variant of a Node, reminding readers that the indicated
string is a natural language word. One could have just as easily said ’Node’,
here; this is just some visual bling.

This is not SQL! We’ve said this before, but it is worth saying again: the metagraph
database is populated with tens of thousands of such statements, “statements” which
just happen to have the form of queries. In the database, these queries are dormant;
they are not running, they are just sitting there, waiting for their day in the sun. The
actual query to be performed looks like this:

55A prefix tree, see https://en.wikipedia.org/wiki/Trie
56See https://en.wikipedia.org/wiki/Rete_algorithm
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( Dual (Word " I " ) (Word " love " ) (Word" you " ) )

Notice that this query has no variables in it: it consists entirely of constants! It is
an ’answer’, not a question! The subgraph isomorphism engine, aka the query engine,
aka the ’pattern matcher’, finds all matching patterns. In this case, it is the two queries
shown earlier. To run the chatbot, one then flips a coin, picks one of the two queries,
runs it, and prints the response. Running the query is computationally ’trivial’, as there
is only one pattern to match: “I love you”.

Pay attention: the above is NOT saying that there are ten thousand queries that are
each performed, until a match is found! No! It is saying that only two queries are run:
first, the ’Dual’, to find some candidates, and then one of the candidates is chosen and
run on a tiny, itsy-bitsy dataset consisting of one sentence. It’s fast. Insofar as all of
this content is stored as metatrees, all of the prior considerations about RAM usage,
search performance and tree walking apply.

The above is more or less a peculiar variation of the Rete algorithm. The Dual link
is used to narrow down the selection of rules to apply, then (users choice) either one of
the rules is selected and fired, or maybe all of the selected rules can be fired.

The take-away lessons are:

• Inverted queries are still queries.

• SQL-inspired languages cannot support inverted queries. As a corollary, most
graph databases cannot support inverted queries.

• Chatbots are highly specialized, customized database engines, highly tuned for
performing inverse queries.

• Rule engines are highly specialized, customized database engines, highly tuned
for performing inverse queries.

• A metagraph-style query language can easily support both queries and inverted
queries, because the query engine itself is a subgraph isomorphism solver, and
it does not particularly care about the types of the Nodes and Links that it is
matching, as long as it is able to match.

• Because metatrees contain both the forward pointers and the weak pointers point-
ing backwards, they effectively have a trie (prefix tree) built in. That is, the or-
ganizational advantages of using prefix trees to perform rapid string-matching
searches come “for free” in a metagraph, as a part of the general infrastructure.

• Because metaqueries can support both direct and inverted queries, they pro-
vide a natural infrastructure on which to build both rule engines and forward-
inferencing chainers.

That chatbots can be unified with conventional query is perhaps one of the more enter-
taining aspects coming out of metaqueries.
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10 Types
It was observed above that metatrees have a natural string representation as s-expressions.
Every system that works with s-expressions gives a privileged interpretation to the first
word after an open parenthesis. In Lisp and Scheme, that first word is an operator.57 In
a key-value store, the first element is the key, and the trailing elements are the value.

What is the first element for metatrees?
The answer appears to be that it is a type, a type-theoretical type. This is not a

proclamation or a theoretical result, this is an experimental result. After working with
meta-trees for a decade, and examining how they represent data, it appears that there
isn’t any other obvious interpretation than to say that it is a type.

The observational evidence is as follows:

• From the beginning, it is noted that there is a distinction between Nodes and
Links, roughly analogous to the vertexes and edges of graphs. So it seems these
are two different types.

• Could this could be reduced to just one type, by replacing Nodes with nullary
Links? Not easily. Nodes need to be distinguishable, and thus are given unique
string names. There is no particular need to give a Link a string name: it’s
outgoing list uniquely disambiguates that Link from any other.58 In order to
get rid of the Node/Link distinction, Links would have to be given names. A
compelling reason to do this would need to be found.

• The description of the meta-query language introduces a Variable, which is ob-
viously a kind of Node, but is distinguished from a conventional Node, in that it
has special semantics in the context of a query. It is a different kind of Node.

• Similarly, the metaquery language introduces a Present Link, which is a kind of
a Link, but, again, has special semantics in the context of a query.

• In the current OpenCog Atomese system, there are well over a hundred distinct
Node and Link types, each introduced as a need arose. Booleans: AndLink,
OrLink, NotLink.59 Arithmetic: PlusLink, MinusLink, GreaterThanLink.60 Set
theory: SetLink, MemberLink.61 Functionals: LambdaLink.62

• For many (but not all) of these Nodes and Links, it became convenient to create
a corresponding C++ class that performs some function. A silly example is the

57See John N. Shutt’s blog post https://fexpr.blogspot.com/2011/04/fexpr.html for
careful terminology.

58This is eerily similar to atomic physics. All electrons are indistinguishable. All protons are indistin-
guishable. When combined into atoms, however, this changes. An element of one type (say, carbon) is
clearly different than another (say, oxygen), but all carbon atoms are indistinguishable... unless they ap-
pear in an organic molecule. That is, it is the relationship of elementary particles to one-another that gives
structure to the universe. It is not the particles themselves.

59See https://wiki.opencog.org/w/AndLink
60See https://wiki.opencog.org/w/PlusLink
61See https://wiki.opencog.org/w/SetLink
62See https://wiki.opencog.org/w/LambdaLink_and_ScopeLink
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PlusLink: when this is executed, the arguments are added together, if the argu-
ments are numeric. The C++ class performs this addition. Now, it is generally
regarded that C++ classes are types. By extension, PlusLink must also be a type.

• After recognizing that Nodes and Links and their variations are all types, it be-
came easy to create a type system: SignatureLink, TypedVariableLink, TypeN-
ode, ArrowLink.63 It appears to be entirely consistent and, as a type system,
entirely conventional.64

Ergo, it is natural to take the concept of a metatree, which already distinguishes be-
tween Node and Link, and recognize that this naturally blossoms into a type system.

As a type system, it is dynamically typed, not static-typed. New types can be
introduced at any time. It doesn’t even make sense to talk of a “static” type system,
because the metatrees are not being “compiled” into the database: they are merely
being inserted. There is a long-running REPL loop, and nothing is gained by preventing
users from defining new types at runtime. Note that this does make the type system
clash with that of OCaml, Haskell, Scala, all of which deploy a static type system.

As a practical example: Nodes and Links are of type Atom. The biology subsystem
uses GeneNodes and ProteinNodes, since these are useful for biological data represen-
tations. These are also type Atom. The biology subsystem is a distinct subsystem,
and not part of the core: it is dynamically loaded. This creates issues for the OCaml
binding, which might have known about Atoms at compile time, but had no clue about
GeneNodes and ProteinNodes at compile time. Static types and metatree types do not
play well together.

The second bullet point above idly wondered about a monotyped system, where
everything is a Link, and Links have a string name. This would bring the system closer
to a Lisp/Scheme conception of the world. Yet, this changes nothing: there is still
a need to have variables, as well as atoms for algebraic operations: and, or, not, set,
member, plus, minus, etc. If there were only Links with a string name, then these
would then have to be demarcated in the string name... and thus have to be recognized
de facto types.

10.1 Examples of Types
By “types” it is meant both the types of computer science,65 and of type theory.66

In conventional computer programming, ints, floats and strings are types (these are
the “primitive types”), and so are object-oriented classes (these are the “compound
types” or “product types”). Function calls have a type signature too, this is the arrow
type, pointing from the input arguments to the output type. The ML, CaML, Haskell,
Scala and F# programming languages provide an explicit type system, allowing the

63See https://wiki.opencog.org/w/SignatureLink
64The OpenCog AtomSpace includes all the easy type-theoretical stuff. What’s currently missing are

type equations, type variables and dependent types. These are missing mostly because no one has asked for
them yet. Atomese has evolved on an as-needed basis: if something isn’t urgently needed, it does not get
implemented.

65See https://en.wikipedia.org/wiki/Type_system
66See https://en.wikipedia.org/wiki/Type_theory
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programmer to define new types (In OO languages, new types can only be defined by
defining a new OO class).

Before proceeding further, a reference example will help clarify the idea. Consider
the English language sentence “The cat sat on the mat.” This encodes some informa-
tion; how might it be encoded as a metagraph? There are many possible choices, but
one of the simplest is shown here:

( S i t t i n g L i n k
( ObjectNode " cat " )
( ObjectNode " mat " ) )

This clearly has the Link-Node structure of a metatree; but appears to be using some
derived types. The denotational semantics is obviously that of the English language
sentence; the denotation of the remaining pieces is left to the imagination of the reader.
This is not laziness on the part of the writer: the word “denotation”, when used in a
computer science context, means “what the computer programmer is imagining it to
be”.67 So, for example, a “float” is only a “number” in the programmer’s head; what
is actually in the machine code is just some bytes, and not “numbers”. Likewise here,
SittingLink is just some metatree sitting in RAM. It has no inherent meaning by itself;
its meaning emerges only in relation to other metatrees in the system.68

The ’(ObjectNode “cat”)’ could be replaced by a CatNode, although the usage would
appear to change: one would then write ’(CatNode “Fuzzykins”)’. Alternately, one could
choose to move in the opposite direction, and write:

( L ink
( PredicateNode " Object " )
(Node " cat " ) )

which denotes that cats are objects. The ’PredicateNode’ denotes something that behaves
like a truth value; the assertion is that it is true that cats are objects. But there is also
a different denotational idea lurking here: The above is behaving as a kind of type
declaration! It appears to be declaring that things of type “cat” are things of type
“Object”. One could sharpen this, and write

( TypeDe f i n i t i onL ink
( TypeNode " CatNode " )
( TypeNode " ObjectNode " ) )

After this type definition is provided, it appears to be appropriate to write things like
’(CatNode “Fuzzykins”)’.

To round out this example, it might also be useful to define a ’CatLink’, which could
then be used to link together disparate properties:

( CatLink
( PredicateNode " has " )
(Node " f u r " ) )

( CatLink

67Playing a bit fast and loose here: “denotational semantics”, see https://en.wikipedia.org/
wiki/Denotational_semantics is about converting what the programmer is thinking back into
mathematical formulas. Computer science, just like math, loves to go meta whenever it can.

68Philosophically, this is a pan-psychic view of the world: individual ur-items are meaningless; all mean-
ing comes from the relationships between objects.
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( PredicateNode "URL" )
(Node " h t t ps : / / example . com/ cu t ie − f u z b a l l . g i f " ) )

This is just generic knowledge representation. Caution: although the metatrees (and
metatypes) above are encoding information about cats, they may not be the “best” way
to represent knowledge. A more conventional approach would be to define ’IsALink’
and ’HasALink’ and ’PartOfLink’: holonyms and meronyms, and use those in one’s lexical
ontology. There is freedom in how this can be done; there is nothing in the metatrees
that is forcing certain types upon the user, over other types.

10.2 Dynamic Typing
In a metagraph, the concept of a primitive type appears to be fluid; new types are
naturally definable by means of type inheritance. By “primitive”, it is meant a type that
is not built with one of the usual type constructors: a list constructor, a function-type
constructor, a product (pair) constructor.

There does not seem to be any need to prevent the creation of new types at run-
time. This is in contrast to statically-typed programming languages. Languages such
as OCaml demand static typing so that type inference can be done at compile time.
After a module has been compiled, the resulting binary has an API with fixed types
in the interface. This provides safety: the user cannot call into the binary with bo-
gus arguments, leading to undefined behavior or crashes. In that sense, static types
“make sense” for compiled programming languages. The case is different here: with
metagraphs, the primary goal is not programming but data representation. Metagraphs
don’t “do anything”, they are not an “executable program”, they just “exist”. At least
this particular reason for static type-safety seems to disappear.

Once a type has been defined, it does not seem reasonable to allow it to be re-
defined. Re-definition of a type risks corrupting the meaning, if not the actual structure
of the data held in the metagraph. For example, one would not want to redefine CatN-
ode to allow the description of fish; existing assertions about fur and tails become
invalidated. Thus, types are immutable: they can be created, they can be destroyed;
they cannot be altered.

10.3 Signatures and Arrows
It appears that metatree types are also implicit type constructors, in that they are triv-
ially reified.69 Thus,

( L i s t L i n k
( ConceptNode "some " )
( ConceptNode " t h i ng " ) )

obviously has the type signature70 of

69See https://en.wikipedia.org/wiki/Reification_(computer_science)
70See https://en.wikipedia.org/wiki/Signature_(logic) for the formal definition of

a signature, and https://en.wikipedia.org/wiki/Type_signature for a quotidian, non-
abstract working-programmer definition.
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( S ignatureL ink
( L i s t L i n k

( TypeNode ’ ConceptNode )
( TypeNode ’ ConceptNode ) )

It has two other signatures as well:
( S ignatureL ink

( L i s t L i n k
( ConceptNode "some " )
( TypeNode ’ ConceptNode ) )

and
( S ignatureL ink

( L i s t L i n k
( TypeNode ’ ConceptNode )
( ConceptNode " t h i ng " ) )

This kind of easy reification makes it possible to easily attach complex types to
type definitions. Returning to the previous example of a ’CatLink’, one could write

( TypeDe f i n i t i onL ink
( TypeNode " CatLink " )
( S ignatureL ink

( TypeNode ’ PredicateNode )
( TypeNode ’Node ) ) )

which indicates that the only valid way to use a ’CatLink’ is as a binary Link, where
the first element of the outgoing pair must be a ’PredicateNode’ and the second must
be a ’Node’ (and not a ’Link’). There does not appear to be anything challenging to
introducing sigma types: one could have written

( TypeDe f i n i t i onL ink
( TypeNode " CatLink " )
( S ignatureL ink

( TypeNode ’ PredicateNode )
( TypeChoice

( TypeNode ’Node )
( TypeNode ’ L ink ) ) ) )

which states that the second element of the outgoing pair can be either a Node or a
Link. To reiterate: type reification appears to be trivial with metatrees.

To round out the above examples, we present the very common case of the signature
of lambdas. Here, the lambda

( LambdaLink
( V a r i a b l e L i s t

( TypedVariable ( Var iab le " $x " ) ( TypeNode ’ ConceptNode ) )
( TypedVariable ( Var iab le " $y " ) ( TypeNode ’ ConceptNode ) ) )

( FooBarBodyLink . . . ) )

obviously must have the signature of
( ArrowLink

( V a r i a b l e L i s t
( TypeNode ’ ConceptNode )
( TypeNode ’ ConceptNode ) )

( TypeNode ’ FooBarBodyLink ) )

That is, the arrow points from a list of the input types to a list of the output types.
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10.4 Jigsaw Puzzle Pieces and Sheaves
Caution: the idea of Lambdas, and of Arrows, while extremely widespread in pro-
gramming practice, is the source of tremendous confusion and difficulty in knowledge
representation. Even worse: just as fish are unaware of water, most programmers are
unaware of alternatives to lambdas.

There is one extremely important alternative, discussed in other texts in this series:
the jigsaw puzzle piece, and its tab and slot connectors. Telegraphically: if one has a
function f (x) and beta-reduces it with 42 to get f (42), one is ’connecting’ the jigsaw-
puzzle slot x in f (x) to the jigsaw-puzzle tab 42. That is, beta reduction is an example
of jigsaw-puzzle assembly.

f 42

f(42)

f x

f(x)

42x

x=42

The two pieces can be connected together only if the connector types match: the
slot and the tab must have matching types but opposite sexes. This ensures the type-
safety of beta-reduction. Observe the coloring of the vertexes in the above diagram.
At the bottom, there are two black (“full”) vertexes, connected by a (full) edge. At
the top, the open-colored vertexes are (unconnected) “connectors”, and the edges are
“half-edges”, not yet fully formed until the connection is made.

Full-fledged jigsaw puzzle pieces can connect in every-which way (provided that
the tabs and slots are correctly mated). This is more general than term algebras, in
which term trees are always DAGs. That is, a lambda is an anonymous term, an arrow
is a component of a term tree. For computer programming (functional or imperative),
one thinks about calling functions and methods with arguments, leading to the notion
of an abstract syntax tree. Function calls and arrow types naturally construct trees, or,
more generally, DAGs. Graphs with loops, or graphs with undirected edges do not
naturally occur in lambda calculus or functional programming.

For knowledge representation, it does not have to be that way. The directionality
of the arrow can be discarded, and mating can be indicated with the connectors them-
selves. That is, the ArrowLink is a special case of a more general jigsaw-puzzle-piece
link:

( ConnectorSeq
( Connector

( TypeNode ’ ConceptNode )
( Direct ionNode " i npu t " ) )

( Connector
( TypeNode ’ ConceptNode )
( Direct ionNode " i npu t " ) )
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( Connector
( TypeNode ’ FooBarBodyLink )
( Direct ionNode " output " ) ) )

This example shows only two direction types (direction “sexes”): “input” and “output”.
There is no particular need to restrict to such heterosexual connection types or mating
rules. One can have a single sex, which, when connected, gives undirected edges.
One can have three or more sexes, with peculiar mating rules for which can attach
to which. Natural examples occur in chemistry (bonds), in biochemistry (reactomes),
in biology (mating types of fungii) and in medicine (infectious disease transmission.)
Examples from computer science include polymorphic types. A particularly strong
example comes from linguistics: the Link Grammar, where the notion of jigsaw puzzle
pieces is made explicit.[6, 7]

What is the point of all of this? It is to reformulate or generalize the notion of beta
reduction and functional programming into a general setting, more sutiable for general
knowledge prepresentation. One can, of course, fall back to earlier concepts of a di-
rected edge, and represent everything in terms of vertices and edges. But the shortfalls
of a conventional graph representation have already been discussed: not just represen-
tational shortfalls, but also algorithmic issues, with RAM and CPU consumption. The
point of the jigsaw puzzle paradigm is that it provides locality of data and ease of as-
sembly. Partially assembled jigsaws obey the sheaf axioms. Sheaves are generically
useful for representing knowledge.

To conclude: metatrees are naturally typed; those types are naturally reified; the
reifications are recursive, and the level of recursion is limited by the imagination.
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11 Evaluation / Execution
Metatrees generalize the notion of trees. A special case of trees are the “abstract syntax
tree”.71 The denotational semantics of abstract syntax trees is that they are executable
programs. Thus, an expression such as “if (a > b) return a+b;” can be represented by an
abstract syntax tree, given below:

( I f L i n k
( GreaterThanLink

( VariableNode " a " )
( VariableNode " b " ) )

( P lusL ink
( VariableNode " a " )
( VariableNode " b " ) ) )

As such, some metatrees can serve a dual purpose: both to record syntactic struc-
ture, and to be executable. Perhaps this feels painfully obvious at this point; if this
is the case, it should be contrasted to the situation of programming in lisp or scheme.
First of all, in lisp, one is programming, not representing data. The source code for
lisp programs resides in files, not in databases.72 In the end, a lisp program is always
executable (evaluatable); if it is not, that is because it is broken in some way (or you
just quoted the whole thing). This is not the case here: there is nothing about metatrees
that makes them inherently evaluatable or executable. Indeed, the above fragment is
not executable until the variables are bound to some values. Worse, its ambiguous as to
what should happen if a is not greater than b. As a program, it is not really valid. As a
metatree, it is as good as any other, differing only in having the hint of being possibly,
potentially evaluatable.

A subset of metatrees can be considered to be a programming language. This may
appear to be self-evident; that this has not been the case historically is demonstrated
below.

11.1 Fexprs, Macros and Rewriting
In lisp, functions that act on abstract syntax trees are called “fexprs”.73 Modern lisps
no longer explicitly support fexprs; an influential paper from 1980 labeled them as
harmful, and made the argument that macros were superior.

That’s all well and good, but macros, as defined in lisp/scheme, can only be “run
once”. Macros run on source expressions, and they expand the source expression into
something evaluatable. That is, macro languages allow the programmer to define a
set of rewrite rules to transform input syntax trees into output syntax trees. However,
conceived of as macros, they can only be run once, during a pre-processing stage; they
cannot be run later, once the resulting program has started executing. In this sense, they
are limited in a way that fexprs are not.

71See https://en.wikipedia.org/wiki/Abstract_syntax_tree
72Let’s not be silly. Of course one could stick the source code into a database. But how would you write a

query to get it back out, and evaluate it? In lisp? Well, yes, of course, one could write some wrappers to do
that. So what? Are you representing knowledge yet? Did you create a knowledge query system?

73See https://en.wikipedia.org/wiki/Fexpr
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This is in sharp contrast to the needs of predicate logic74 and proof theory.75 The-
orem provers are constructed out of term rewriting systems.76

Note that SQL does offer a poor-mans term rewriting system. It is not general, and
not suited to the general needs of term rewriting, but it is plenty enough to enable “data
processing”.77 For example

CREATE TABLE foo (name TEXT, number INT ) ;
CREATE TABLE bar ( person TEXT, phone INT , nickname TEXT ) ;
INSERT INTO bar ( person , phone ) SELECT name, number FROM foo ;

performs a rewrite of records (rows) from one table to another. Some sort of ability to
perform rewrites is innate to any database system, as a primary need is not only to store
data, but to perform transformations on it. These transformations must be done at run-
time, dynamically; they cannot be done at “compile time”, the way that the lisp/scheme
macro system performs them.

It should be clear that metagraphs in and of themselves are fairly useless without
some sort of term rewriting system to go along with them; this was already implied in
the earlier discussions concerning database queries.78

What is new here is that, if the metagraphs are represented as s-expressions, some of
those s-expressions are potentially evaluatable, and thus lisp-like. Unlike conventional
lisp, the evaluation system must live in harmony with the term rewriting system; thus,
enabling the evaluation of metatrees seems to require some sort of clearly defined fexpr
or $vau interfaces in the evaluator.

11.2 ProLog
An alternative to the lisp/scheme fexpr/$vau mindset is provided by ProLog. It is both a
programming language, in that ProLog programs are executable, and it is a knowledge
store, in that the Datalog fragment of ProLog is explicitly intended to store data.

ProLog makes abstract syntax trees explicit: it is hard to understand how prolog
works, unless one learns to think in terms of trees. Certainly, the “cut operator” in
prolog is one of the early stumbling blocks for programmers learning prolog. It’s hard
to see what it does, until one realizes that it is literally cutting branches off of a tree. At
the same time, chapter one, the very first chapter of any book on prolog programming
is rife with examples of knowledge representation. One will find something like this:

pa ren t_ch i l d ( tom , e r i ca ) .
pa ren t_ch i l d ( mike , tom ) .
s i b l i n g (X, Y) : − pa ren t_ch i l d (Z , X) , pa ren t_ch i l d (Z , Y ) .

74See https://en.wikipedia.org/wiki/First-order_logic
75See https://en.wikipedia.org/wiki/Proof_theory
76See https://en.wikipedia.org/wiki/Rewriting and https://en.wikipedia.

org/wiki/Abstract_rewriting_system
77And I do mean “data processing” in all of its glorious 1960’s generality: performing database queries

to associate an electric utility customer’s account with their electric usage for that month, and their mailing
address, and print a bill to be mailed to the customer. This is, in a sense, quintessential data processing, and
central to it is the database holding names, accounts and monthly usages.

78Maude[5] is an example of a term rewriting system disassociated from theorem provers,
databases and inference engines. See http://maude.cs.uiuc.edu/maude1/manual/
maude-manual-html/maude-manual_0.html and http://maude.cs.illinois.edu/w/
index.php/The_Maude_System
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The first two statements are assertions of fact, the third is a inference rule. They have a
very obvious representation as trees, and, more precisely as meta-trees. Yet, strangely,
prolog programs are encoded in text files, and not as a collection of entries in a graph
database!

This last observation becomes truly bizarre, if one imagines some non-trivial knowl-
edge representation problem. Imagine keeping census data in prolog. Maintaining a
text file with dozens of lines of code per person, for millions of people is absurd.
Applying transformations or graph rewrites is impossible for text files. Consider the
inference “sibling” above. It can be taken as a run-time directive, but it can also be
taken as a graph rewrite rule: find all graphs having two terms, “parent_child(Z, X)”
and “parent_child(Z, Y)” and create a new term “sibling(X, Y)”. Such a rewrite is not all
that hard in a database; in SQL, some appropriate combination of “SELECT INTO” and
“JOIN”. 79 Looking at it this way, prolog “wants” to live in a database. Yet it doesn’t.

So, yes, superficially, databases and execution are orthogonal concerns. But if one
begins to look at what people actually do, in practice, with SQL, and how, in practice,
they design code for object-relational databases, that orthogonality gets a bit fuzzy. It’s
downright cloudy by the time one is writing PL/SQL statements. Coming from the
opposite direction, as prolog does, makes the “separation of concerns” even cloudier.

11.3 Intermediate Languages
These aren’t even the only examples. Inside of compilers, one finds “intermediate lan-
guages”. For Microsoft, this is the CIL or Common Intermediate Language.80 For
Gnu GCC, it is GIMPLE.81 For LLVM, it is the LLVM IR.82 These are somewhat like
assembly code, but abstract, and not specific to CPU instruction sets. They encode
abstract syntax trees, and thus sit above the bytecode/instruction-set layer. Looking
carefully, one will observe that “compiler optimization” actually consists of a very
small database of the currently active, non-retired abstract syntax trees, and that opti-
mization is a collection of re-write rules (in the sense of the prolog rewrite rule, above)
being applied to the trees in the active database.

Of course, what happens inside a compiler is very narrow, and very carefully crafted
to suit the needs of the compiler, and nothing more. This is a high art that has been
honed over many decades. Intermediate languages are almost never written to disk, ex-
cept during debugging, when they are presented to the programmer as text strings. Yet
the lessons they teach can be taken as generic: creating graphs, and then transforming
them, via graph re-writing, is a generically useful operation. Representing knowledge
as trees, and specifically, as typed meta-trees, offers a huge representational efficiency
over plain graphs or SQL tables or key-value stores. The efficiency is both computa-
tional (RAM usage, CPU cycles) and expressive: writing inferences in prolog really is
a lot easier than writing SQL statements.

79The only stumbling block being the need to reference the “parents” table twice during the join. Hmm...
what was that bit, about explicit graph-walking, again?

80See https://en.wikipedia.org/wiki/Common_Intermediate_Language
81See https://gcc.gnu.org/wiki/GIMPLE
82See https://hub.packtpub.com/introducing-llvm-intermediate-representation/
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11.4 Human-oriented vs. Machine-oriented
ProLog is a human-oriented programming language. It is expected that humans are
going to write prolog, and thus the language features are designed to be easy for humans
to manipulate. In this sense, it is like almost all programming languages – almost all,
but not all.

The intermediate languages are not human-oriented, but machine oriented. It is not
expected that programmers will be writing in intermediate languages, no more than
they are expected to write in assembly code. Intermediate languages are designed to be
easy to use by machines: specifically, by the internal algorithms of compilers. A com-
piler needs to turn high-level languages into assembly code. The resulting assembly
code should run fast; but how to perform the optimization, the rearrangement of terms
that enables fast assembly? Some compiler optimizations can be done directly on the
input source: for example, loop hoisting. Some compiler optimizations can be done
directly on the assembly: for example, peephole optimizations. The vast majority of
desirable program transformations cannot be done in either the source language or the
target language. This is why intermediate languages exist. Intermediate languages are
fine-tuned to make it easy for algorithms to read and write them. They are designed for
machines, and not for people.

It appears that any kind of programming language constructed from raw metatree
s-expressions is more machine friendly than it is human-friendly. The example given
earlier:

( I f L i n k
( GreaterThanLink

( VariableNode " a " )
( VariableNode " b " ) )

( P lusL ink
( VariableNode " a " )
( VariableNode " b " ) ) )

is stunningly verbose, as compared to the far more succinct “if (a > b) return a+b;”. Al-
though humans can (and do) write metagraph programs using the s-expression repre-
sentation, it is rather tedious to type up, and rather painful to read.83

To conclude: although some metatrees might be executable or evaluatable, and
thus constitute a programming language, it does not appear to be a language that is
particularly human-friendly, at least, not in its s-expression representation.

Lets ruminate one more paragraph on this. One could create a human-readable
language on top of of metatree s-expressions. There have been at least two larger
efforts: “ghost”84 and “MeTTa”,85 as well as some lesser efforts (a chatbot triplestore).
Doing so defeats the machine-readability of the s-expressions themselves. Much of
the primary utility of using metatrees comes from being able to apply graph rewriting
rules to them. A graph rewrite rule consists of a pattern template to be matched, and
the resultant transformation. When the template is an s-expression, of the kind given

83Heh. In fact, I (we: other users too) write metatree s-expressions daily. Perhaps this is a case of “do as I
say, not as I do”.

84See https://wiki.opencog.org/w/Ghost
85See https://wiki.opencog.org/wikihome/images/b/b7/MeTTa_Specification.

pdf which can be found in the https://wiki.opencog.org/w/Hyperon:Atomese wiki page.
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in the section on MetaQuery Language, then it is easy to match. When it is something
else, the application of the pattern rules becomes difficult. The pattern language can no
longer be simple, and worse, the pattern language diverges from the source language
itself. The s-expression form seems to hit a happy medium: the pattern language is a
valid subset of the whole language. It is easy to parse, making it ideal for algorithmic
manipulation. It is too low-level to make it comfortable for humans; but given that we
live in a machine age, this is perhaps a not unexpected twist.
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12 Atomese
Almost all of the various ideas articulated in this text have been implemented in the
OpenCog AtomSpace, nominally going under the name of Atomese. Historically, it
was created to be a knowledge representation system in which probabilistic reasoning
could be performed. Regular use and the pressures of user demands have forced the
sharpening of various concepts and features, most of which have been reviewed above.

The platform continues to be deployed in production systems, while also being an
experimental platform for the development of new ideas. As these are found to be
sound, the system does, as a whole, mutate.

If the reader of this text finds any of the above concepts to be dubious, or perhaps
ill-defined and in need of sharpening, they are encouraged to contact the mailing list.
The AtomSpace, and Atomese are malleable. Bad ideas do need to be replaced by good
ones.

If the reader of this text finds any of the above concepts to be vague, then please
note that AtomSpace source code repo contains a large variety of example demos of
each of the discussed features.86

86See https://github.com/opencog/atomspace/tree/master/examples

68

https://github.com/opencog/atomspace/tree/master/examples


13 Conclusion
Several important claims were made about metagraphs and metagraph stores. These
were:

• Metagraphs are a simple and relatively minor generalization of graphs.

• Metagraphs are more representationally compact than graphs. They are more
efficient at representing data.

• Metagraph query is more general than SQL-inspired query systems, and breaks
out of the table-join paradigm that is most commonly offered in graph-query
systems.

• Table normalization, normally an intellectually demanding task for relational
database design, comes “for free”, when one works with metagraphs.

• Specifying metagraphs as text strings is easier than specifying graphs as strings.

• Metatrees are naturally typed. Ordinary graphs are not.

• Metatrees are naturally (even trivially) reified. Ordinary graphs are not.

• Metatrees are naturally abstract syntax trees; this is possible but not natural when
working with ordinary graphs.

• Metagraphs are foundational, providing a common platform for a broad vari-
ety of computing tasks: ranging from data storage, to symbolic computing and
inference, to functional (or imperative) programming.

• Metagraphs are low-level. They appear to be ideal for algorithmic manipulation.
They are sufficiently human-readable to allow daily authoring, but they are not
a substitute for a proper high-level programming language targeting humans as
the programmers.

This text started out as an attempt to describe the RAM and CPU usage properties of
metagraphs, and unwittingly turned into a strong statement about the general utility of
metagraphs as a foundational system. As such, it provides a strong statement about
many of the design decisions that went into the OpenCog AtomSpace, which is the
primary research vehicle for these ideas. Even so, it is not the culmination of the jour-
ney. The series of chapters in this directory are about sheaves. These provide a general
connectionist approach to data representation, and the sheaf approach is different from
metagraphs, having distinct representational properties (including CPU and RAM us-
age). Understanding metagraphs is a key gateway to the sheaves project. Fortunately,
the metagraph approach, taken by the current AtomSpace is fairly mature, having more
than a decade of implementation and use experience behind it. This text gives a flavor
of where it has arrived.
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14 Thanks
The second revision of this text has benefited from the (witting or unwitting) helpful
input of Amirouche Boubekki, Kino Coursey, John Cowan, Marc Nieper-Wißkirchen,
Adam Vandervorst and Steven Wiley. Absolutely none of this would have been possible
without a decade’s worth of gracious support and tutelage of Ben Goertzel.
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