Clarifications for numeric-range Wolfgang Corcoran-Mathe (29 Aug 2020 17:15 UTC)
Re: Clarifications for numeric-range Arthur A. Gleckler (29 Aug 2020 17:36 UTC)
Re: Clarifications for numeric-range Wolfgang Corcoran-Mathe (29 Aug 2020 17:43 UTC)
Re: Clarifications for numeric-range Arthur A. Gleckler (29 Aug 2020 17:49 UTC)
Re: Clarifications for numeric-range Wolfgang Corcoran-Mathe (29 Aug 2020 18:31 UTC)
Re: Clarifications for numeric-range Marc Nieper-Wißkirchen (29 Aug 2020 17:41 UTC)
Re: Clarifications for numeric-range Wolfgang Corcoran-Mathe (30 Aug 2020 00:05 UTC)

Clarifications for numeric-range Wolfgang Corcoran-Mathe 29 Aug 2020 17:14 UTC

I've pushed a change to the specification of numeric-range which (I
think) correctly describes the values contained in the range returned,
at least when <step> is non-zero:

> This range produces the sequence
>
>     start, (+ start step), (+ start (* 2 step)), …, (+ start (* n step)),
>
> where n is the greatest integer such that (+ start (* n step)) < end
> if step is positive, or such that (+ start (* n step)) > end if step
> is negative.

This is somewhat wordy, but, I think, superior to merely describing the
range's indexer (as in draft #4).

It remains to be determined: Is a range with a zero step an infinite
sequence of the <start> parameter, is it an error to create such a
range, or what?

--
Wolfgang Corcoran-Mathe  <xxxxxx@sigwinch.xyz>

"It from bit." --John Wheeler