Re: infinities reformulated Chongkai Zhu (31 May 2005 07:17 UTC)
Re: infinities reformulated Aubrey Jaffer (31 May 2005 23:47 UTC)
Re: infinities reformulated Thomas Bushnell BSG (02 Jun 2005 15:23 UTC)
Re: infinities reformulated Aubrey Jaffer (02 Jun 2005 16:12 UTC)
Re: infinities reformulated Thomas Bushnell BSG (02 Jun 2005 16:16 UTC)
string->number Aubrey Jaffer (02 Jun 2005 19:10 UTC)
Re: string->number Thomas Bushnell BSG (02 Jun 2005 20:05 UTC)
Re: string->number Aubrey Jaffer (03 Jun 2005 01:59 UTC)
Re: string->number Thomas Bushnell BSG (03 Jun 2005 02:09 UTC)
Re: string->number Aubrey Jaffer (15 Jun 2005 21:10 UTC)
Re: string->number Thomas Bushnell BSG (16 Jun 2005 15:28 UTC)
Re: string->number bear (16 Jun 2005 16:59 UTC)
Re: string->number Aubrey Jaffer (17 Jun 2005 02:16 UTC)
Re: infinities reformulated bear (04 Jun 2005 16:42 UTC)
Re: infinities reformulated Aubrey Jaffer (17 Jun 2005 02:22 UTC)
Re: infinities reformulated bear (19 Jun 2005 17:19 UTC)
Re: infinities reformulated Aubrey Jaffer (20 Jun 2005 03:10 UTC)
Re: infinities reformulated bear (20 Jun 2005 05:46 UTC)
precise-numbers Aubrey Jaffer (26 Jun 2005 01:50 UTC)

Re: infinities reformulated Aubrey Jaffer 17 Jun 2005 02:23 UTC

 | Date: Sat, 4 Jun 2005 09:42:21 -0700 (PDT)
 | From: bear <xxxxxx@sonic.net>
 |
 | For heavy math work, I want to be able to specify the precision
 | used, in one of several ways; For example, by saying
 |
 | (with-inexact-precision 128
 |   ...
 |   (sqrt 2)
 |   ...)
 |
 | or
 |
 |   (sqrt 2 :precision 128)
 |
 | or (without keywords)
 |
 |   (sqrt 2 128)
 |
 | or something.

Can you give an example of a calculation where you expect that
choosing a reduced precision will reap a large benefit?