Re: infinities reformulated Chongkai Zhu (31 May 2005 07:17 UTC)
Re: infinities reformulated Aubrey Jaffer (31 May 2005 23:47 UTC)
Re: infinities reformulated Thomas Bushnell BSG (02 Jun 2005 15:23 UTC)
Re: infinities reformulated Aubrey Jaffer (02 Jun 2005 16:12 UTC)
Re: infinities reformulated Thomas Bushnell BSG (02 Jun 2005 16:16 UTC)
string->number Aubrey Jaffer (02 Jun 2005 19:10 UTC)
Re: string->number Thomas Bushnell BSG (02 Jun 2005 20:05 UTC)
Re: string->number Aubrey Jaffer (03 Jun 2005 01:59 UTC)
Re: string->number Thomas Bushnell BSG (03 Jun 2005 02:09 UTC)
Re: string->number Aubrey Jaffer (15 Jun 2005 21:10 UTC)
Re: string->number Thomas Bushnell BSG (16 Jun 2005 15:28 UTC)
Re: string->number bear (16 Jun 2005 16:59 UTC)
Re: string->number Aubrey Jaffer (17 Jun 2005 02:16 UTC)
Re: infinities reformulated bear (04 Jun 2005 16:42 UTC)
Re: infinities reformulated Aubrey Jaffer (17 Jun 2005 02:22 UTC)
Re: infinities reformulated bear (19 Jun 2005 17:19 UTC)
Re: infinities reformulated Aubrey Jaffer (20 Jun 2005 03:10 UTC)
Re: infinities reformulated bear (20 Jun 2005 05:46 UTC)
precise-numbers Aubrey Jaffer (26 Jun 2005 01:50 UTC)

Re: infinities reformulated Thomas Bushnell BSG 02 Jun 2005 15:23 UTC

Aubrey Jaffer <xxxxxx@alum.mit.edu> writes:

> So in a Scheme implementation which has "arbitrarily big" precision,
> how many digits is (sqrt 2)?  How many digits is (sin 7/5)?

There is no function "precision-of", so there is no need for an
answer.  Arbitrarily big precision arithmetic (generally) works pretty
well; you carry around symbolic representations and operate on them.