Any more bugs/typos? Vladimir Nikishkin (15 Sep 2020 15:35 UTC)
Re: Any more bugs/typos? Wolfgang Corcoran-Mathe (15 Sep 2020 19:13 UTC)
Re: Any more bugs/typos? Vladimir Nikishkin (16 Sep 2020 01:54 UTC)
Re: Any more bugs/typos? Arthur A. Gleckler (16 Sep 2020 02:49 UTC)
Re: Any more bugs/typos? Wolfgang Corcoran-Mathe (16 Sep 2020 05:50 UTC)
Re: Any more bugs/typos? Vladimir Nikishkin (16 Sep 2020 06:19 UTC)
Re: Any more bugs/typos? Wolfgang Corcoran-Mathe (16 Sep 2020 16:11 UTC)
Re: Any more bugs/typos? Wolfgang Corcoran-Mathe (16 Sep 2020 16:15 UTC)
Re: Any more bugs/typos? Vladimir Nikishkin (17 Sep 2020 04:00 UTC)
Re: Any more bugs/typos? Wolfgang Corcoran-Mathe (17 Sep 2020 05:49 UTC)
Re: Any more bugs/typos? Vladimir Nikishkin (17 Sep 2020 06:04 UTC)
Re: Any more bugs/typos? Marc Nieper-Wißkirchen (17 Sep 2020 07:00 UTC)
Re: Any more bugs/typos? Vladimir Nikishkin (17 Sep 2020 07:08 UTC)
Re: Any more bugs/typos? Marc Nieper-Wißkirchen (17 Sep 2020 07:14 UTC)
Re: Any more bugs/typos? Vladimir Nikishkin (17 Sep 2020 07:22 UTC)
Re: Any more bugs/typos? Marc Nieper-Wißkirchen (17 Sep 2020 07:25 UTC)
Re: Any more bugs/typos? Vladimir Nikishkin (17 Sep 2020 07:50 UTC)
Re: Any more bugs/typos? Marc Nieper-Wißkirchen (17 Sep 2020 08:00 UTC)
Re: Any more bugs/typos? Vladimir Nikishkin (17 Sep 2020 08:04 UTC)
Re: Any more bugs/typos? Wolfgang Corcoran-Mathe (17 Sep 2020 16:47 UTC)

Re: Any more bugs/typos? Marc Nieper-Wißkirchen 17 Sep 2020 07:14 UTC

Am Do., 17. Sept. 2020 um 09:08 Uhr schrieb Vladimir Nikishkin
<xxxxxx@gmail.com>:
>
> I can only respond with a quote from the ImageMagick manual:
> "It is not recommended that you use more or less than 4 points per
> 'bezier' curve segment, to keep things simple."

But that's a limitation from ImageMagick (and possibly of the sample
implementation). I don't think it makes sense to add this limitation
in the specification itself.

Bézier curves of high degree are (at least mathematically) no
wizardry. They are a linear interpolation between two Bézier curves
one degree less. On the Wikipedia page on Bézier curves, there is a
nice picture ([1]) that shows how a quadratic curve is produced from
interpolation by linear ones.

--

[1] https://en.wikipedia.org/wiki/B%C3%A9zier_curve#/media/File:Quadratic_Beziers_in_string_art.svg